Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity

The structure-guided design of chloride-conducting channelrhodopsins has illuminated mechanisms underlying ion selectivity of this remarkable family of light-activated ion channels. The first generation of chloride-conducting channelrhodopsins, guided in part by development of a structure-informed e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-01, Vol.113 (4), p.822-829
Hauptverfasser: Berndt, Andre, Lee, Soo Yeun, Wietek, Jonas, Ramakrishnan, Charu, Steinberg, Elizabeth E., Rashid, Asim J., Kim, Hoseok, Park, Sungmo, Santoro, Adam, Frankland, Paul W., Iyer, Shrivats M., Pak, Sally, Ährlund-Richter, Sofie, Delp, Scott L., Malenka, Robert C., Josselyn, Sheena A., Carlén, Marie, Hegemann, Peter, Deisseroth, Karl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 829
container_issue 4
container_start_page 822
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Berndt, Andre
Lee, Soo Yeun
Wietek, Jonas
Ramakrishnan, Charu
Steinberg, Elizabeth E.
Rashid, Asim J.
Kim, Hoseok
Park, Sungmo
Santoro, Adam
Frankland, Paul W.
Iyer, Shrivats M.
Pak, Sally
Ährlund-Richter, Sofie
Delp, Scott L.
Malenka, Robert C.
Josselyn, Sheena A.
Carlén, Marie
Hegemann, Peter
Deisseroth, Karl
description The structure-guided design of chloride-conducting channelrhodopsins has illuminated mechanisms underlying ion selectivity of this remarkable family of light-activated ion channels. The first generation of chloride-conducting channelrhodopsins, guided in part by development of a structure-informed electrostatic model for pore selectivity, included both the introduction of amino acids with positively charged side chains into the ion conduction pathway and the removal of residues hypothesized to support negatively charged binding sites for cations. Engineered channels indeed became chloride selective, reversing near −65 mV and enabling a new kind of optogenetic inhibition; however, these first-generation chloride-conducting channels displayed small photocurrents and were not tested for optogenetic inhibition of behavior. Here we report the validation and further development of the channelrhodopsin pore model via crystal structure-guided engineering of next-generation light-activated chloride channels (iC++) and a bistable variant (SwiChR++) with net photocurrents increased more than 15-fold under physiological conditions, reversal potential further decreased by another ∼15 mV, inhibition of spiking faithfully tracking chloride gradients and intrinsic cell properties, strong expression in vivo, and the initial microbial opsin channel-inhibitor–based control of freely moving behavior. We further show that inhibition by light-gated chloride channels is mediated mainly by shunting effects, which exert optogenetic control much more efficiently than the hyperpolarization induced by light-activated chloride pumps. The design and functional features of these next-generation chloride-conducting channelrhodopsins provide both chronic and acute timescale tools for reversible optogenetic inhibition, confirm fundamental predictions of the ion selectivity model, and further elucidate electrostatic and steric structure–function relationships of the light-gated pore.
doi_str_mv 10.1073/pnas.1523341113
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1523341113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26467496</jstor_id><sourcerecordid>26467496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-2c263bc5a7578a213c7f45bd6ac1ec59547f4fb4cc5ce132daeae78cb808de1e3</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoWqtrV0pBEDejeWeyEUR8geBCXYdM5o5ObSc1ySj-e1Na62OVx_3O4d57ENoj-IRgxU5nnY0nRFDGOCGEraEBwZoUkmu8jgYYU1WUnPIttB3jGGOsRYk30RaVUmsu9AAdPaTQu9QHOxk1vu9qm1rfxZFvRn6W_DN0kFoXd9BGYycRdpfnED1dXT5e3BR399e3F-d3hRNSp4I6KlnlhFVClZYS5lTDRVVL6wg4oQXP76bizgkHhNHaggVVuqrEZQ0E2BAVC9_4AbO-MrPQTm34NN62Zvn1mm9gBM5zicyfLfhcmULtoEt5kj-yv5WufTHP_t1wxZnSKhscLw2Cf-shJjNto4PJxHbg-2iIknnRqsQ4o4f_0LHvQ5fXMaeExEzkIIbodEG54GMM0KyaIdjMMzPzzMxPZllx8HuGFf8dUgb2l8BcubIjzHBTUvpTH8fkwy89l4pryb4AukOnQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765603552</pqid></control><display><type>article</type><title>Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><source>Free Full-Text Journals in Chemistry</source><creator>Berndt, Andre ; Lee, Soo Yeun ; Wietek, Jonas ; Ramakrishnan, Charu ; Steinberg, Elizabeth E. ; Rashid, Asim J. ; Kim, Hoseok ; Park, Sungmo ; Santoro, Adam ; Frankland, Paul W. ; Iyer, Shrivats M. ; Pak, Sally ; Ährlund-Richter, Sofie ; Delp, Scott L. ; Malenka, Robert C. ; Josselyn, Sheena A. ; Carlén, Marie ; Hegemann, Peter ; Deisseroth, Karl</creator><creatorcontrib>Berndt, Andre ; Lee, Soo Yeun ; Wietek, Jonas ; Ramakrishnan, Charu ; Steinberg, Elizabeth E. ; Rashid, Asim J. ; Kim, Hoseok ; Park, Sungmo ; Santoro, Adam ; Frankland, Paul W. ; Iyer, Shrivats M. ; Pak, Sally ; Ährlund-Richter, Sofie ; Delp, Scott L. ; Malenka, Robert C. ; Josselyn, Sheena A. ; Carlén, Marie ; Hegemann, Peter ; Deisseroth, Karl</creatorcontrib><description>The structure-guided design of chloride-conducting channelrhodopsins has illuminated mechanisms underlying ion selectivity of this remarkable family of light-activated ion channels. The first generation of chloride-conducting channelrhodopsins, guided in part by development of a structure-informed electrostatic model for pore selectivity, included both the introduction of amino acids with positively charged side chains into the ion conduction pathway and the removal of residues hypothesized to support negatively charged binding sites for cations. Engineered channels indeed became chloride selective, reversing near −65 mV and enabling a new kind of optogenetic inhibition; however, these first-generation chloride-conducting channels displayed small photocurrents and were not tested for optogenetic inhibition of behavior. Here we report the validation and further development of the channelrhodopsin pore model via crystal structure-guided engineering of next-generation light-activated chloride channels (iC++) and a bistable variant (SwiChR++) with net photocurrents increased more than 15-fold under physiological conditions, reversal potential further decreased by another ∼15 mV, inhibition of spiking faithfully tracking chloride gradients and intrinsic cell properties, strong expression in vivo, and the initial microbial opsin channel-inhibitor–based control of freely moving behavior. We further show that inhibition by light-gated chloride channels is mediated mainly by shunting effects, which exert optogenetic control much more efficiently than the hyperpolarization induced by light-activated chloride pumps. The design and functional features of these next-generation chloride-conducting channelrhodopsins provide both chronic and acute timescale tools for reversible optogenetic inhibition, confirm fundamental predictions of the ion selectivity model, and further elucidate electrostatic and steric structure–function relationships of the light-gated pore.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1523341113</identifier><identifier>PMID: 26699459</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Action Potentials ; Amino Acid Sequence ; Amino acids ; Animals ; Arginine - chemistry ; Avoidance Learning - physiology ; Avoidance Learning - radiation effects ; Basolateral Nuclear Complex - physiology ; Basolateral Nuclear Complex - radiation effects ; Binding sites ; Biological Sciences ; Cells, Cultured ; Cellular biology ; Chlorides - metabolism ; Dependovirus - genetics ; Electroshock ; Electrostatics ; Fear ; Fiber Optic Technology ; Genetic Vectors - administration &amp; dosage ; Genetic Vectors - genetics ; HEK293 Cells ; Hippocampus - cytology ; Histidine - chemistry ; Humans ; Hydrogen-Ion Concentration ; INAUGURAL ARTICLES ; Ion Channel Gating - physiology ; Ion Channel Gating - radiation effects ; Ions ; Male ; Memory - physiology ; Memory - radiation effects ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Neurons - physiology ; Optogenetics ; Protein Conformation ; Proteins ; Rats ; Rats, Sprague-Dawley ; Rhodopsin - chemistry ; Rhodopsin - metabolism ; Rhodopsin - radiation effects ; Sequence Alignment ; Ventral Tegmental Area - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-01, Vol.113 (4), p.822-829</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 26, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-2c263bc5a7578a213c7f45bd6ac1ec59547f4fb4cc5ce132daeae78cb808de1e3</citedby><cites>FETCH-LOGICAL-c569t-2c263bc5a7578a213c7f45bd6ac1ec59547f4fb4cc5ce132daeae78cb808de1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/4.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26467496$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26467496$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,550,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26699459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:132833112$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Berndt, Andre</creatorcontrib><creatorcontrib>Lee, Soo Yeun</creatorcontrib><creatorcontrib>Wietek, Jonas</creatorcontrib><creatorcontrib>Ramakrishnan, Charu</creatorcontrib><creatorcontrib>Steinberg, Elizabeth E.</creatorcontrib><creatorcontrib>Rashid, Asim J.</creatorcontrib><creatorcontrib>Kim, Hoseok</creatorcontrib><creatorcontrib>Park, Sungmo</creatorcontrib><creatorcontrib>Santoro, Adam</creatorcontrib><creatorcontrib>Frankland, Paul W.</creatorcontrib><creatorcontrib>Iyer, Shrivats M.</creatorcontrib><creatorcontrib>Pak, Sally</creatorcontrib><creatorcontrib>Ährlund-Richter, Sofie</creatorcontrib><creatorcontrib>Delp, Scott L.</creatorcontrib><creatorcontrib>Malenka, Robert C.</creatorcontrib><creatorcontrib>Josselyn, Sheena A.</creatorcontrib><creatorcontrib>Carlén, Marie</creatorcontrib><creatorcontrib>Hegemann, Peter</creatorcontrib><creatorcontrib>Deisseroth, Karl</creatorcontrib><title>Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The structure-guided design of chloride-conducting channelrhodopsins has illuminated mechanisms underlying ion selectivity of this remarkable family of light-activated ion channels. The first generation of chloride-conducting channelrhodopsins, guided in part by development of a structure-informed electrostatic model for pore selectivity, included both the introduction of amino acids with positively charged side chains into the ion conduction pathway and the removal of residues hypothesized to support negatively charged binding sites for cations. Engineered channels indeed became chloride selective, reversing near −65 mV and enabling a new kind of optogenetic inhibition; however, these first-generation chloride-conducting channels displayed small photocurrents and were not tested for optogenetic inhibition of behavior. Here we report the validation and further development of the channelrhodopsin pore model via crystal structure-guided engineering of next-generation light-activated chloride channels (iC++) and a bistable variant (SwiChR++) with net photocurrents increased more than 15-fold under physiological conditions, reversal potential further decreased by another ∼15 mV, inhibition of spiking faithfully tracking chloride gradients and intrinsic cell properties, strong expression in vivo, and the initial microbial opsin channel-inhibitor–based control of freely moving behavior. We further show that inhibition by light-gated chloride channels is mediated mainly by shunting effects, which exert optogenetic control much more efficiently than the hyperpolarization induced by light-activated chloride pumps. The design and functional features of these next-generation chloride-conducting channelrhodopsins provide both chronic and acute timescale tools for reversible optogenetic inhibition, confirm fundamental predictions of the ion selectivity model, and further elucidate electrostatic and steric structure–function relationships of the light-gated pore.</description><subject>Action Potentials</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Arginine - chemistry</subject><subject>Avoidance Learning - physiology</subject><subject>Avoidance Learning - radiation effects</subject><subject>Basolateral Nuclear Complex - physiology</subject><subject>Basolateral Nuclear Complex - radiation effects</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>Chlorides - metabolism</subject><subject>Dependovirus - genetics</subject><subject>Electroshock</subject><subject>Electrostatics</subject><subject>Fear</subject><subject>Fiber Optic Technology</subject><subject>Genetic Vectors - administration &amp; dosage</subject><subject>Genetic Vectors - genetics</subject><subject>HEK293 Cells</subject><subject>Hippocampus - cytology</subject><subject>Histidine - chemistry</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>INAUGURAL ARTICLES</subject><subject>Ion Channel Gating - physiology</subject><subject>Ion Channel Gating - radiation effects</subject><subject>Ions</subject><subject>Male</subject><subject>Memory - physiology</subject><subject>Memory - radiation effects</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Neurons - physiology</subject><subject>Optogenetics</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rhodopsin - chemistry</subject><subject>Rhodopsin - metabolism</subject><subject>Rhodopsin - radiation effects</subject><subject>Sequence Alignment</subject><subject>Ventral Tegmental Area - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNpdkUtLAzEUhYMoWqtrV0pBEDejeWeyEUR8geBCXYdM5o5ObSc1ySj-e1Na62OVx_3O4d57ENoj-IRgxU5nnY0nRFDGOCGEraEBwZoUkmu8jgYYU1WUnPIttB3jGGOsRYk30RaVUmsu9AAdPaTQu9QHOxk1vu9qm1rfxZFvRn6W_DN0kFoXd9BGYycRdpfnED1dXT5e3BR399e3F-d3hRNSp4I6KlnlhFVClZYS5lTDRVVL6wg4oQXP76bizgkHhNHaggVVuqrEZQ0E2BAVC9_4AbO-MrPQTm34NN62Zvn1mm9gBM5zicyfLfhcmULtoEt5kj-yv5WufTHP_t1wxZnSKhscLw2Cf-shJjNto4PJxHbg-2iIknnRqsQ4o4f_0LHvQ5fXMaeExEzkIIbodEG54GMM0KyaIdjMMzPzzMxPZllx8HuGFf8dUgb2l8BcubIjzHBTUvpTH8fkwy89l4pryb4AukOnQg</recordid><startdate>20160126</startdate><enddate>20160126</enddate><creator>Berndt, Andre</creator><creator>Lee, Soo Yeun</creator><creator>Wietek, Jonas</creator><creator>Ramakrishnan, Charu</creator><creator>Steinberg, Elizabeth E.</creator><creator>Rashid, Asim J.</creator><creator>Kim, Hoseok</creator><creator>Park, Sungmo</creator><creator>Santoro, Adam</creator><creator>Frankland, Paul W.</creator><creator>Iyer, Shrivats M.</creator><creator>Pak, Sally</creator><creator>Ährlund-Richter, Sofie</creator><creator>Delp, Scott L.</creator><creator>Malenka, Robert C.</creator><creator>Josselyn, Sheena A.</creator><creator>Carlén, Marie</creator><creator>Hegemann, Peter</creator><creator>Deisseroth, Karl</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20160126</creationdate><title>Structural foundations of optogenetics</title><author>Berndt, Andre ; Lee, Soo Yeun ; Wietek, Jonas ; Ramakrishnan, Charu ; Steinberg, Elizabeth E. ; Rashid, Asim J. ; Kim, Hoseok ; Park, Sungmo ; Santoro, Adam ; Frankland, Paul W. ; Iyer, Shrivats M. ; Pak, Sally ; Ährlund-Richter, Sofie ; Delp, Scott L. ; Malenka, Robert C. ; Josselyn, Sheena A. ; Carlén, Marie ; Hegemann, Peter ; Deisseroth, Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-2c263bc5a7578a213c7f45bd6ac1ec59547f4fb4cc5ce132daeae78cb808de1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Action Potentials</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Arginine - chemistry</topic><topic>Avoidance Learning - physiology</topic><topic>Avoidance Learning - radiation effects</topic><topic>Basolateral Nuclear Complex - physiology</topic><topic>Basolateral Nuclear Complex - radiation effects</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>Chlorides - metabolism</topic><topic>Dependovirus - genetics</topic><topic>Electroshock</topic><topic>Electrostatics</topic><topic>Fear</topic><topic>Fiber Optic Technology</topic><topic>Genetic Vectors - administration &amp; dosage</topic><topic>Genetic Vectors - genetics</topic><topic>HEK293 Cells</topic><topic>Hippocampus - cytology</topic><topic>Histidine - chemistry</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>INAUGURAL ARTICLES</topic><topic>Ion Channel Gating - physiology</topic><topic>Ion Channel Gating - radiation effects</topic><topic>Ions</topic><topic>Male</topic><topic>Memory - physiology</topic><topic>Memory - radiation effects</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Neurons - physiology</topic><topic>Optogenetics</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rhodopsin - chemistry</topic><topic>Rhodopsin - metabolism</topic><topic>Rhodopsin - radiation effects</topic><topic>Sequence Alignment</topic><topic>Ventral Tegmental Area - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berndt, Andre</creatorcontrib><creatorcontrib>Lee, Soo Yeun</creatorcontrib><creatorcontrib>Wietek, Jonas</creatorcontrib><creatorcontrib>Ramakrishnan, Charu</creatorcontrib><creatorcontrib>Steinberg, Elizabeth E.</creatorcontrib><creatorcontrib>Rashid, Asim J.</creatorcontrib><creatorcontrib>Kim, Hoseok</creatorcontrib><creatorcontrib>Park, Sungmo</creatorcontrib><creatorcontrib>Santoro, Adam</creatorcontrib><creatorcontrib>Frankland, Paul W.</creatorcontrib><creatorcontrib>Iyer, Shrivats M.</creatorcontrib><creatorcontrib>Pak, Sally</creatorcontrib><creatorcontrib>Ährlund-Richter, Sofie</creatorcontrib><creatorcontrib>Delp, Scott L.</creatorcontrib><creatorcontrib>Malenka, Robert C.</creatorcontrib><creatorcontrib>Josselyn, Sheena A.</creatorcontrib><creatorcontrib>Carlén, Marie</creatorcontrib><creatorcontrib>Hegemann, Peter</creatorcontrib><creatorcontrib>Deisseroth, Karl</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berndt, Andre</au><au>Lee, Soo Yeun</au><au>Wietek, Jonas</au><au>Ramakrishnan, Charu</au><au>Steinberg, Elizabeth E.</au><au>Rashid, Asim J.</au><au>Kim, Hoseok</au><au>Park, Sungmo</au><au>Santoro, Adam</au><au>Frankland, Paul W.</au><au>Iyer, Shrivats M.</au><au>Pak, Sally</au><au>Ährlund-Richter, Sofie</au><au>Delp, Scott L.</au><au>Malenka, Robert C.</au><au>Josselyn, Sheena A.</au><au>Carlén, Marie</au><au>Hegemann, Peter</au><au>Deisseroth, Karl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-01-26</date><risdate>2016</risdate><volume>113</volume><issue>4</issue><spage>822</spage><epage>829</epage><pages>822-829</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The structure-guided design of chloride-conducting channelrhodopsins has illuminated mechanisms underlying ion selectivity of this remarkable family of light-activated ion channels. The first generation of chloride-conducting channelrhodopsins, guided in part by development of a structure-informed electrostatic model for pore selectivity, included both the introduction of amino acids with positively charged side chains into the ion conduction pathway and the removal of residues hypothesized to support negatively charged binding sites for cations. Engineered channels indeed became chloride selective, reversing near −65 mV and enabling a new kind of optogenetic inhibition; however, these first-generation chloride-conducting channels displayed small photocurrents and were not tested for optogenetic inhibition of behavior. Here we report the validation and further development of the channelrhodopsin pore model via crystal structure-guided engineering of next-generation light-activated chloride channels (iC++) and a bistable variant (SwiChR++) with net photocurrents increased more than 15-fold under physiological conditions, reversal potential further decreased by another ∼15 mV, inhibition of spiking faithfully tracking chloride gradients and intrinsic cell properties, strong expression in vivo, and the initial microbial opsin channel-inhibitor–based control of freely moving behavior. We further show that inhibition by light-gated chloride channels is mediated mainly by shunting effects, which exert optogenetic control much more efficiently than the hyperpolarization induced by light-activated chloride pumps. The design and functional features of these next-generation chloride-conducting channelrhodopsins provide both chronic and acute timescale tools for reversible optogenetic inhibition, confirm fundamental predictions of the ion selectivity model, and further elucidate electrostatic and steric structure–function relationships of the light-gated pore.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26699459</pmid><doi>10.1073/pnas.1523341113</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-01, Vol.113 (4), p.822-829
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1523341113
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; SWEPUB Freely available online; Free Full-Text Journals in Chemistry
subjects Action Potentials
Amino Acid Sequence
Amino acids
Animals
Arginine - chemistry
Avoidance Learning - physiology
Avoidance Learning - radiation effects
Basolateral Nuclear Complex - physiology
Basolateral Nuclear Complex - radiation effects
Binding sites
Biological Sciences
Cells, Cultured
Cellular biology
Chlorides - metabolism
Dependovirus - genetics
Electroshock
Electrostatics
Fear
Fiber Optic Technology
Genetic Vectors - administration & dosage
Genetic Vectors - genetics
HEK293 Cells
Hippocampus - cytology
Histidine - chemistry
Humans
Hydrogen-Ion Concentration
INAUGURAL ARTICLES
Ion Channel Gating - physiology
Ion Channel Gating - radiation effects
Ions
Male
Memory - physiology
Memory - radiation effects
Mice
Mice, Inbred C57BL
Models, Molecular
Molecular Sequence Data
Mutagenesis, Site-Directed
Neurons - physiology
Optogenetics
Protein Conformation
Proteins
Rats
Rats, Sprague-Dawley
Rhodopsin - chemistry
Rhodopsin - metabolism
Rhodopsin - radiation effects
Sequence Alignment
Ventral Tegmental Area - physiology
title Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20foundations%20of%20optogenetics:%20Determinants%20of%20channelrhodopsin%20ion%20selectivity&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Berndt,%20Andre&rft.date=2016-01-26&rft.volume=113&rft.issue=4&rft.spage=822&rft.epage=829&rft.pages=822-829&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1523341113&rft_dat=%3Cjstor_cross%3E26467496%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765603552&rft_id=info:pmid/26699459&rft_jstor_id=26467496&rfr_iscdi=true