Spatial landmarks regulate a Cdc42-dependent MAPK pathway to control differentiation and the response to positional compromise
A fundamental problem in cell biology is to understand how spatial information is recognized and integrated into morphogenetic responses. Budding yeast undergoes differentiation to filamentous growth, which involves changes in cell polarity through mechanisms that remain obscure. Here we define a re...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-04, Vol.113 (14), p.E2019-E2028 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E2028 |
---|---|
container_issue | 14 |
container_start_page | E2019 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Basu, Sukanya Vadaie, Nadia Prabhakar, Aditi Li, Boyang Adhikari, Hema Pitoniak, Andrew Chow, Jacky Chavel, Colin A. Cullen, Paul J. |
description | A fundamental problem in cell biology is to understand how spatial information is recognized and integrated into morphogenetic responses. Budding yeast undergoes differentiation to filamentous growth, which involves changes in cell polarity through mechanisms that remain obscure. Here we define a regulatory input where spatial landmarks (bud-site–selection proteins) regulate the MAPK pathway that controls filamentous growth (fMAPK pathway). The bud-site GTPase Rsr1p regulated the fMAPK pathway through Cdc24p, the guanine nucleotide exchange factor for the polarity establishment GTPase Cdc42p. Positional landmarks that direct Rsr1p to bud sites conditionally regulated the fMAPK pathway, corresponding to their roles in regulating bud-site selection. Therefore, cell differentiation is achieved in part by the reorganization of polarity at bud sites. In line with this conclusion, dynamic changes in budding pattern during filamentous growth induced corresponding changes in fMAPK activity. Intrinsic compromise of bud-site selection also impacted fMAPK activity. Therefore, a surveillance mechanism monitors spatial position in response to extrinsic and intrinsic stress and modulates the response through a differentiation MAPK pathway. |
doi_str_mv | 10.1073/pnas.1522679113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1522679113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26469210</jstor_id><sourcerecordid>26469210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-988546b49b52b4a2ce93c80744fc478a637c64560ef352899a3ec1a7d764dd93</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhzAlkqRcuaccf8ccFqVoVqCgCid4tr-N0s2TjYDugXvjtOOx2WyoffPAzj9-ZQeg1gVMCkp2Ng02npKZUSE0Ie4IWBDSpBNfwFC0AqKwUp_wIvUhpAwC6VvAcHVEJQBSDBfrzfbS5sz3u7dBsbfyRcPQ3U2-zxxYvG8dp1fjRD40fMv5y_u0zLgXr3_YW54BdGHIMPW66tvWxEF2RhQEXF85rX1RpDEPyMzuG1M2P5S8XtmMM2y75l-hZa_vkX-3vY3T94eJ6-am6-vrxcnl-VTkuVK60UjUXK65XNV1xS53XzCmQnLeOS2UFk07wWoBvWU2V1pZ5R6xspOBNo9kxer_TjtNq6xtXkkbbmzF2peVbE2xn_n8ZurW5Cb8MV4xRNgve7QUx_Jx8yqakd74vU_NhSobIMtky9X_oySN0E6ZY2p4pRctRUBfqbEe5GFKKvj2EIWDm1Zp5teZ-taXi7cMeDvzdLguA98BcedARZgg3FxTInO3NDtmkHOK9QnChKQH2F9e0tZE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1782828805</pqid></control><display><type>article</type><title>Spatial landmarks regulate a Cdc42-dependent MAPK pathway to control differentiation and the response to positional compromise</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Basu, Sukanya ; Vadaie, Nadia ; Prabhakar, Aditi ; Li, Boyang ; Adhikari, Hema ; Pitoniak, Andrew ; Chow, Jacky ; Chavel, Colin A. ; Cullen, Paul J.</creator><creatorcontrib>Basu, Sukanya ; Vadaie, Nadia ; Prabhakar, Aditi ; Li, Boyang ; Adhikari, Hema ; Pitoniak, Andrew ; Chow, Jacky ; Chavel, Colin A. ; Cullen, Paul J.</creatorcontrib><description>A fundamental problem in cell biology is to understand how spatial information is recognized and integrated into morphogenetic responses. Budding yeast undergoes differentiation to filamentous growth, which involves changes in cell polarity through mechanisms that remain obscure. Here we define a regulatory input where spatial landmarks (bud-site–selection proteins) regulate the MAPK pathway that controls filamentous growth (fMAPK pathway). The bud-site GTPase Rsr1p regulated the fMAPK pathway through Cdc24p, the guanine nucleotide exchange factor for the polarity establishment GTPase Cdc42p. Positional landmarks that direct Rsr1p to bud sites conditionally regulated the fMAPK pathway, corresponding to their roles in regulating bud-site selection. Therefore, cell differentiation is achieved in part by the reorganization of polarity at bud sites. In line with this conclusion, dynamic changes in budding pattern during filamentous growth induced corresponding changes in fMAPK activity. Intrinsic compromise of bud-site selection also impacted fMAPK activity. Therefore, a surveillance mechanism monitors spatial position in response to extrinsic and intrinsic stress and modulates the response through a differentiation MAPK pathway.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1522679113</identifier><identifier>PMID: 27001830</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - metabolism ; Cellular biology ; MAP Kinase Signaling System ; PNAS Plus ; Proteins ; Saccharomyces cerevisiae - metabolism ; Yeast</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-04, Vol.113 (14), p.E2019-E2028</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Apr 5, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-988546b49b52b4a2ce93c80744fc478a637c64560ef352899a3ec1a7d764dd93</citedby><cites>FETCH-LOGICAL-c468t-988546b49b52b4a2ce93c80744fc478a637c64560ef352899a3ec1a7d764dd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/14.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26469210$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26469210$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27001830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basu, Sukanya</creatorcontrib><creatorcontrib>Vadaie, Nadia</creatorcontrib><creatorcontrib>Prabhakar, Aditi</creatorcontrib><creatorcontrib>Li, Boyang</creatorcontrib><creatorcontrib>Adhikari, Hema</creatorcontrib><creatorcontrib>Pitoniak, Andrew</creatorcontrib><creatorcontrib>Chow, Jacky</creatorcontrib><creatorcontrib>Chavel, Colin A.</creatorcontrib><creatorcontrib>Cullen, Paul J.</creatorcontrib><title>Spatial landmarks regulate a Cdc42-dependent MAPK pathway to control differentiation and the response to positional compromise</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A fundamental problem in cell biology is to understand how spatial information is recognized and integrated into morphogenetic responses. Budding yeast undergoes differentiation to filamentous growth, which involves changes in cell polarity through mechanisms that remain obscure. Here we define a regulatory input where spatial landmarks (bud-site–selection proteins) regulate the MAPK pathway that controls filamentous growth (fMAPK pathway). The bud-site GTPase Rsr1p regulated the fMAPK pathway through Cdc24p, the guanine nucleotide exchange factor for the polarity establishment GTPase Cdc42p. Positional landmarks that direct Rsr1p to bud sites conditionally regulated the fMAPK pathway, corresponding to their roles in regulating bud-site selection. Therefore, cell differentiation is achieved in part by the reorganization of polarity at bud sites. In line with this conclusion, dynamic changes in budding pattern during filamentous growth induced corresponding changes in fMAPK activity. Intrinsic compromise of bud-site selection also impacted fMAPK activity. Therefore, a surveillance mechanism monitors spatial position in response to extrinsic and intrinsic stress and modulates the response through a differentiation MAPK pathway.</description><subject>Biological Sciences</subject><subject>cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - metabolism</subject><subject>Cellular biology</subject><subject>MAP Kinase Signaling System</subject><subject>PNAS Plus</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Yeast</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EokvhzAlkqRcuaccf8ccFqVoVqCgCid4tr-N0s2TjYDugXvjtOOx2WyoffPAzj9-ZQeg1gVMCkp2Ng02npKZUSE0Ie4IWBDSpBNfwFC0AqKwUp_wIvUhpAwC6VvAcHVEJQBSDBfrzfbS5sz3u7dBsbfyRcPQ3U2-zxxYvG8dp1fjRD40fMv5y_u0zLgXr3_YW54BdGHIMPW66tvWxEF2RhQEXF85rX1RpDEPyMzuG1M2P5S8XtmMM2y75l-hZa_vkX-3vY3T94eJ6-am6-vrxcnl-VTkuVK60UjUXK65XNV1xS53XzCmQnLeOS2UFk07wWoBvWU2V1pZ5R6xspOBNo9kxer_TjtNq6xtXkkbbmzF2peVbE2xn_n8ZurW5Cb8MV4xRNgve7QUx_Jx8yqakd74vU_NhSobIMtky9X_oySN0E6ZY2p4pRctRUBfqbEe5GFKKvj2EIWDm1Zp5teZ-taXi7cMeDvzdLguA98BcedARZgg3FxTInO3NDtmkHOK9QnChKQH2F9e0tZE</recordid><startdate>20160405</startdate><enddate>20160405</enddate><creator>Basu, Sukanya</creator><creator>Vadaie, Nadia</creator><creator>Prabhakar, Aditi</creator><creator>Li, Boyang</creator><creator>Adhikari, Hema</creator><creator>Pitoniak, Andrew</creator><creator>Chow, Jacky</creator><creator>Chavel, Colin A.</creator><creator>Cullen, Paul J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160405</creationdate><title>Spatial landmarks regulate a Cdc42-dependent MAPK pathway to control differentiation and the response to positional compromise</title><author>Basu, Sukanya ; Vadaie, Nadia ; Prabhakar, Aditi ; Li, Boyang ; Adhikari, Hema ; Pitoniak, Andrew ; Chow, Jacky ; Chavel, Colin A. ; Cullen, Paul J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-988546b49b52b4a2ce93c80744fc478a637c64560ef352899a3ec1a7d764dd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biological Sciences</topic><topic>cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - metabolism</topic><topic>Cellular biology</topic><topic>MAP Kinase Signaling System</topic><topic>PNAS Plus</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basu, Sukanya</creatorcontrib><creatorcontrib>Vadaie, Nadia</creatorcontrib><creatorcontrib>Prabhakar, Aditi</creatorcontrib><creatorcontrib>Li, Boyang</creatorcontrib><creatorcontrib>Adhikari, Hema</creatorcontrib><creatorcontrib>Pitoniak, Andrew</creatorcontrib><creatorcontrib>Chow, Jacky</creatorcontrib><creatorcontrib>Chavel, Colin A.</creatorcontrib><creatorcontrib>Cullen, Paul J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basu, Sukanya</au><au>Vadaie, Nadia</au><au>Prabhakar, Aditi</au><au>Li, Boyang</au><au>Adhikari, Hema</au><au>Pitoniak, Andrew</au><au>Chow, Jacky</au><au>Chavel, Colin A.</au><au>Cullen, Paul J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial landmarks regulate a Cdc42-dependent MAPK pathway to control differentiation and the response to positional compromise</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-04-05</date><risdate>2016</risdate><volume>113</volume><issue>14</issue><spage>E2019</spage><epage>E2028</epage><pages>E2019-E2028</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A fundamental problem in cell biology is to understand how spatial information is recognized and integrated into morphogenetic responses. Budding yeast undergoes differentiation to filamentous growth, which involves changes in cell polarity through mechanisms that remain obscure. Here we define a regulatory input where spatial landmarks (bud-site–selection proteins) regulate the MAPK pathway that controls filamentous growth (fMAPK pathway). The bud-site GTPase Rsr1p regulated the fMAPK pathway through Cdc24p, the guanine nucleotide exchange factor for the polarity establishment GTPase Cdc42p. Positional landmarks that direct Rsr1p to bud sites conditionally regulated the fMAPK pathway, corresponding to their roles in regulating bud-site selection. Therefore, cell differentiation is achieved in part by the reorganization of polarity at bud sites. In line with this conclusion, dynamic changes in budding pattern during filamentous growth induced corresponding changes in fMAPK activity. Intrinsic compromise of bud-site selection also impacted fMAPK activity. Therefore, a surveillance mechanism monitors spatial position in response to extrinsic and intrinsic stress and modulates the response through a differentiation MAPK pathway.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27001830</pmid><doi>10.1073/pnas.1522679113</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-04, Vol.113 (14), p.E2019-E2028 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1522679113 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Biological Sciences cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - metabolism Cellular biology MAP Kinase Signaling System PNAS Plus Proteins Saccharomyces cerevisiae - metabolism Yeast |
title | Spatial landmarks regulate a Cdc42-dependent MAPK pathway to control differentiation and the response to positional compromise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-10T12%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20landmarks%20regulate%20a%20Cdc42-dependent%20MAPK%20pathway%20to%20control%20differentiation%20and%20the%20response%20to%20positional%20compromise&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Basu,%20Sukanya&rft.date=2016-04-05&rft.volume=113&rft.issue=14&rft.spage=E2019&rft.epage=E2028&rft.pages=E2019-E2028&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1522679113&rft_dat=%3Cjstor_cross%3E26469210%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1782828805&rft_id=info:pmid/27001830&rft_jstor_id=26469210&rfr_iscdi=true |