Mobile small RNAs regulate genome-wide DNA methylation

RNA silencing at the transcriptional and posttranscriptional levels regulates endogenous gene expression, controls invading transposable elements (TEs), and protects the cell against viruses. Key components of the mechanism are small RNAs (sRNAs) of 21–24 nt that guide the silencing machinery to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-02, Vol.113 (6), p.E801-E810
Hauptverfasser: Lewsey, Mathew G., Hardcastle, Thomas J., Melnyk, Charles W., Molnar, Attila, Valli, Adrián, Urich, Mark A., Nery, Joseph R., Baulcombe, David C., Ecker, Joseph R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E810
container_issue 6
container_start_page E801
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Lewsey, Mathew G.
Hardcastle, Thomas J.
Melnyk, Charles W.
Molnar, Attila
Valli, Adrián
Urich, Mark A.
Nery, Joseph R.
Baulcombe, David C.
Ecker, Joseph R.
description RNA silencing at the transcriptional and posttranscriptional levels regulates endogenous gene expression, controls invading transposable elements (TEs), and protects the cell against viruses. Key components of the mechanism are small RNAs (sRNAs) of 21–24 nt that guide the silencing machinery to their nucleic acid targets in a nucleotide sequence-specific manner. Transcriptional gene silencing is associated with 24-nt sRNAs and RNA-directed DNA methylation (RdDM) at cytosine residues in three DNA sequence contexts (CG, CHG, and CHH). We previously demonstrated that 24-nt sRNAs are mobile from shoot to root in Arabidopsis thaliana and confirmed that they mediate DNA methylation at three sites in recipient cells. In this study, we extend this finding by demonstrating that RdDM of thousands of loci in root tissues is dependent upon mobile sRNAs from the shoot and that mobile sRNA-dependent DNA methylation occurs predominantly in non-CG contexts. Mobile sRNA-dependent non-CG methylation is largely dependent on the DOMAINS REARRANGED METHYLTRANSFERASES 1/2 (DRM1/DRM2) RdDM pathway but is independent of the CHROMOMETHYLASE (CMT)2/3 DNA methyltransferases. Specific superfamilies of TEs, including those typically found in gene-rich euchromatic regions, lose DNA methylation in a mutant lacking 22- to 24-nt sRNAs (dicer-like 2, 3, 4 triple mutant). Transcriptome analyses identified a small number of genes whose expression in roots is associated with mobile sRNAs and connected to DNA methylation directly or indirectly. Finally, we demonstrate that sRNAs from shoots of one accession move across a graft union and target DNA methylation de novo at normally unmethylated sites in the genomes of root cells from a different accession.
doi_str_mv 10.1073/pnas.1515072113
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1515072113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26467707</jstor_id><sourcerecordid>26467707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-243048a577ceebdb1afb28f9737d5da472c301e6d7824caa8c27a77a3b1dc7973</originalsourceid><addsrcrecordid>eNqFkUFv1DAQRi0EokvhzAkUqRcuaceO43EuSKtSoFJbJARny3Fmt1kl8WInoP57HLZsFy49zWHevBn7Y-w1h1MOWJxtBxtPeclLQMF58YQtOFQ8V7KCp2wBIDDXUsgj9iLGDQBUpYbn7Ego1Ki1XDB17eu2oyz2tuuyrzfLmAVaT50dKVvT4HvKf7UNZR9ulllP4-1d6rR-eMmerWwX6dV9PWbfP158O_-cX335dHm-vMpdqcoxF7IAqW2J6IjqpuZ2VQu9qrDApmysROEK4KQa1EI6a7UTaBFtUfPGYcKO2fuddzvVPTWOhjHYzmxD29twZ7xtzb-dob01a__TSFSQnEnw7l4Q_I-J4mj6NjrqOjuQn6LhiEqVWv3Z9RiqpKo0YpXQk__QjZ_CkH5iphBBSgmJOttRLvgYA632d3Mwc3xmjs88xJcm3h4-d8__zesAmCf3Ol4YZS408AS82QGbOPpwIJDzWVj8BuvIqLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767704440</pqid></control><display><type>article</type><title>Mobile small RNAs regulate genome-wide DNA methylation</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lewsey, Mathew G. ; Hardcastle, Thomas J. ; Melnyk, Charles W. ; Molnar, Attila ; Valli, Adrián ; Urich, Mark A. ; Nery, Joseph R. ; Baulcombe, David C. ; Ecker, Joseph R.</creator><creatorcontrib>Lewsey, Mathew G. ; Hardcastle, Thomas J. ; Melnyk, Charles W. ; Molnar, Attila ; Valli, Adrián ; Urich, Mark A. ; Nery, Joseph R. ; Baulcombe, David C. ; Ecker, Joseph R.</creatorcontrib><description>RNA silencing at the transcriptional and posttranscriptional levels regulates endogenous gene expression, controls invading transposable elements (TEs), and protects the cell against viruses. Key components of the mechanism are small RNAs (sRNAs) of 21–24 nt that guide the silencing machinery to their nucleic acid targets in a nucleotide sequence-specific manner. Transcriptional gene silencing is associated with 24-nt sRNAs and RNA-directed DNA methylation (RdDM) at cytosine residues in three DNA sequence contexts (CG, CHG, and CHH). We previously demonstrated that 24-nt sRNAs are mobile from shoot to root in Arabidopsis thaliana and confirmed that they mediate DNA methylation at three sites in recipient cells. In this study, we extend this finding by demonstrating that RdDM of thousands of loci in root tissues is dependent upon mobile sRNAs from the shoot and that mobile sRNA-dependent DNA methylation occurs predominantly in non-CG contexts. Mobile sRNA-dependent non-CG methylation is largely dependent on the DOMAINS REARRANGED METHYLTRANSFERASES 1/2 (DRM1/DRM2) RdDM pathway but is independent of the CHROMOMETHYLASE (CMT)2/3 DNA methyltransferases. Specific superfamilies of TEs, including those typically found in gene-rich euchromatic regions, lose DNA methylation in a mutant lacking 22- to 24-nt sRNAs (dicer-like 2, 3, 4 triple mutant). Transcriptome analyses identified a small number of genes whose expression in roots is associated with mobile sRNAs and connected to DNA methylation directly or indirectly. Finally, we demonstrate that sRNAs from shoots of one accession move across a graft union and target DNA methylation de novo at normally unmethylated sites in the genomes of root cells from a different accession.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1515072113</identifier><identifier>PMID: 26787884</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alleles ; Arabidopsis - genetics ; Arabidopsis thaliana ; Biological Sciences ; DNA methylation ; DNA Methylation - genetics ; DNA Transposable Elements - genetics ; Gene expression ; Gene Expression Regulation, Plant ; Genetic Loci ; Genome, Plant ; Genomics ; Plant Roots - genetics ; PNAS Plus ; Ribonucleic acid ; RNA ; RNA, Plant - genetics ; RNA, Plant - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-02, Vol.113 (6), p.E801-E810</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Feb 9, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-243048a577ceebdb1afb28f9737d5da472c301e6d7824caa8c27a77a3b1dc7973</citedby><cites>FETCH-LOGICAL-c565t-243048a577ceebdb1afb28f9737d5da472c301e6d7824caa8c27a77a3b1dc7973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26467707$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26467707$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26787884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewsey, Mathew G.</creatorcontrib><creatorcontrib>Hardcastle, Thomas J.</creatorcontrib><creatorcontrib>Melnyk, Charles W.</creatorcontrib><creatorcontrib>Molnar, Attila</creatorcontrib><creatorcontrib>Valli, Adrián</creatorcontrib><creatorcontrib>Urich, Mark A.</creatorcontrib><creatorcontrib>Nery, Joseph R.</creatorcontrib><creatorcontrib>Baulcombe, David C.</creatorcontrib><creatorcontrib>Ecker, Joseph R.</creatorcontrib><title>Mobile small RNAs regulate genome-wide DNA methylation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>RNA silencing at the transcriptional and posttranscriptional levels regulates endogenous gene expression, controls invading transposable elements (TEs), and protects the cell against viruses. Key components of the mechanism are small RNAs (sRNAs) of 21–24 nt that guide the silencing machinery to their nucleic acid targets in a nucleotide sequence-specific manner. Transcriptional gene silencing is associated with 24-nt sRNAs and RNA-directed DNA methylation (RdDM) at cytosine residues in three DNA sequence contexts (CG, CHG, and CHH). We previously demonstrated that 24-nt sRNAs are mobile from shoot to root in Arabidopsis thaliana and confirmed that they mediate DNA methylation at three sites in recipient cells. In this study, we extend this finding by demonstrating that RdDM of thousands of loci in root tissues is dependent upon mobile sRNAs from the shoot and that mobile sRNA-dependent DNA methylation occurs predominantly in non-CG contexts. Mobile sRNA-dependent non-CG methylation is largely dependent on the DOMAINS REARRANGED METHYLTRANSFERASES 1/2 (DRM1/DRM2) RdDM pathway but is independent of the CHROMOMETHYLASE (CMT)2/3 DNA methyltransferases. Specific superfamilies of TEs, including those typically found in gene-rich euchromatic regions, lose DNA methylation in a mutant lacking 22- to 24-nt sRNAs (dicer-like 2, 3, 4 triple mutant). Transcriptome analyses identified a small number of genes whose expression in roots is associated with mobile sRNAs and connected to DNA methylation directly or indirectly. Finally, we demonstrate that sRNAs from shoots of one accession move across a graft union and target DNA methylation de novo at normally unmethylated sites in the genomes of root cells from a different accession.</description><subject>Alleles</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Biological Sciences</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>DNA Transposable Elements - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetic Loci</subject><subject>Genome, Plant</subject><subject>Genomics</subject><subject>Plant Roots - genetics</subject><subject>PNAS Plus</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Plant - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQRi0EokvhzAkUqRcuaceO43EuSKtSoFJbJARny3Fmt1kl8WInoP57HLZsFy49zWHevBn7Y-w1h1MOWJxtBxtPeclLQMF58YQtOFQ8V7KCp2wBIDDXUsgj9iLGDQBUpYbn7Ego1Ki1XDB17eu2oyz2tuuyrzfLmAVaT50dKVvT4HvKf7UNZR9ulllP4-1d6rR-eMmerWwX6dV9PWbfP158O_-cX335dHm-vMpdqcoxF7IAqW2J6IjqpuZ2VQu9qrDApmysROEK4KQa1EI6a7UTaBFtUfPGYcKO2fuddzvVPTWOhjHYzmxD29twZ7xtzb-dob01a__TSFSQnEnw7l4Q_I-J4mj6NjrqOjuQn6LhiEqVWv3Z9RiqpKo0YpXQk__QjZ_CkH5iphBBSgmJOttRLvgYA632d3Mwc3xmjs88xJcm3h4-d8__zesAmCf3Ol4YZS408AS82QGbOPpwIJDzWVj8BuvIqLQ</recordid><startdate>20160209</startdate><enddate>20160209</enddate><creator>Lewsey, Mathew G.</creator><creator>Hardcastle, Thomas J.</creator><creator>Melnyk, Charles W.</creator><creator>Molnar, Attila</creator><creator>Valli, Adrián</creator><creator>Urich, Mark A.</creator><creator>Nery, Joseph R.</creator><creator>Baulcombe, David C.</creator><creator>Ecker, Joseph R.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160209</creationdate><title>Mobile small RNAs regulate genome-wide DNA methylation</title><author>Lewsey, Mathew G. ; Hardcastle, Thomas J. ; Melnyk, Charles W. ; Molnar, Attila ; Valli, Adrián ; Urich, Mark A. ; Nery, Joseph R. ; Baulcombe, David C. ; Ecker, Joseph R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-243048a577ceebdb1afb28f9737d5da472c301e6d7824caa8c27a77a3b1dc7973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alleles</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Biological Sciences</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>DNA Transposable Elements - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetic Loci</topic><topic>Genome, Plant</topic><topic>Genomics</topic><topic>Plant Roots - genetics</topic><topic>PNAS Plus</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Plant - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewsey, Mathew G.</creatorcontrib><creatorcontrib>Hardcastle, Thomas J.</creatorcontrib><creatorcontrib>Melnyk, Charles W.</creatorcontrib><creatorcontrib>Molnar, Attila</creatorcontrib><creatorcontrib>Valli, Adrián</creatorcontrib><creatorcontrib>Urich, Mark A.</creatorcontrib><creatorcontrib>Nery, Joseph R.</creatorcontrib><creatorcontrib>Baulcombe, David C.</creatorcontrib><creatorcontrib>Ecker, Joseph R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewsey, Mathew G.</au><au>Hardcastle, Thomas J.</au><au>Melnyk, Charles W.</au><au>Molnar, Attila</au><au>Valli, Adrián</au><au>Urich, Mark A.</au><au>Nery, Joseph R.</au><au>Baulcombe, David C.</au><au>Ecker, Joseph R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobile small RNAs regulate genome-wide DNA methylation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-02-09</date><risdate>2016</risdate><volume>113</volume><issue>6</issue><spage>E801</spage><epage>E810</epage><pages>E801-E810</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>RNA silencing at the transcriptional and posttranscriptional levels regulates endogenous gene expression, controls invading transposable elements (TEs), and protects the cell against viruses. Key components of the mechanism are small RNAs (sRNAs) of 21–24 nt that guide the silencing machinery to their nucleic acid targets in a nucleotide sequence-specific manner. Transcriptional gene silencing is associated with 24-nt sRNAs and RNA-directed DNA methylation (RdDM) at cytosine residues in three DNA sequence contexts (CG, CHG, and CHH). We previously demonstrated that 24-nt sRNAs are mobile from shoot to root in Arabidopsis thaliana and confirmed that they mediate DNA methylation at three sites in recipient cells. In this study, we extend this finding by demonstrating that RdDM of thousands of loci in root tissues is dependent upon mobile sRNAs from the shoot and that mobile sRNA-dependent DNA methylation occurs predominantly in non-CG contexts. Mobile sRNA-dependent non-CG methylation is largely dependent on the DOMAINS REARRANGED METHYLTRANSFERASES 1/2 (DRM1/DRM2) RdDM pathway but is independent of the CHROMOMETHYLASE (CMT)2/3 DNA methyltransferases. Specific superfamilies of TEs, including those typically found in gene-rich euchromatic regions, lose DNA methylation in a mutant lacking 22- to 24-nt sRNAs (dicer-like 2, 3, 4 triple mutant). Transcriptome analyses identified a small number of genes whose expression in roots is associated with mobile sRNAs and connected to DNA methylation directly or indirectly. Finally, we demonstrate that sRNAs from shoots of one accession move across a graft union and target DNA methylation de novo at normally unmethylated sites in the genomes of root cells from a different accession.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26787884</pmid><doi>10.1073/pnas.1515072113</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-02, Vol.113 (6), p.E801-E810
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1515072113
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alleles
Arabidopsis - genetics
Arabidopsis thaliana
Biological Sciences
DNA methylation
DNA Methylation - genetics
DNA Transposable Elements - genetics
Gene expression
Gene Expression Regulation, Plant
Genetic Loci
Genome, Plant
Genomics
Plant Roots - genetics
PNAS Plus
Ribonucleic acid
RNA
RNA, Plant - genetics
RNA, Plant - metabolism
title Mobile small RNAs regulate genome-wide DNA methylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A08%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobile%20small%20RNAs%20regulate%20genome-wide%20DNA%20methylation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lewsey,%20Mathew%20G.&rft.date=2016-02-09&rft.volume=113&rft.issue=6&rft.spage=E801&rft.epage=E810&rft.pages=E801-E810&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1515072113&rft_dat=%3Cjstor_cross%3E26467707%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767704440&rft_id=info:pmid/26787884&rft_jstor_id=26467707&rfr_iscdi=true