Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes

Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here amammalian Gro3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-01, Vol.113 (4), p.E430-E439
Hauptverfasser: Mugabo, Yves, Zhao, Shangang, Seifried, Annegrit, Gezzar, Sari, Al-Mass, Anfal, Zhang, Dongwei, Lamontagne, Julien, Attane, Camille, Poursharifi, Pegah, Iglesias, José, Joly, Erik, Peyot, Marie-Line, Gohla, Antje, Madiraju, S. R. Murthy, Prentki, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E439
container_issue 4
container_start_page E430
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Mugabo, Yves
Zhao, Shangang
Seifried, Annegrit
Gezzar, Sari
Al-Mass, Anfal
Zhang, Dongwei
Lamontagne, Julien
Attane, Camille
Poursharifi, Pegah
Iglesias, José
Joly, Erik
Peyot, Marie-Line
Gohla, Antje
Madiraju, S. R. Murthy
Prentki, Marc
description Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here amammalian Gro3P phosphatase (G3PP), which was not known to exist in mammalian cells, that can directly hydrolyze Gro3P to glycerol. We identified that mammalian phosphoglycolate phosphatase, with an uncertain function, acts in fact as a G3PP. We found that G3PP, by controlling Gro3P levels, regulates glycolysis and glucose oxidation, cellular redox and ATP production, gluconeogenesis, glycerolipid synthesis, and fatty acid oxidation in pancreatic islet β-cells and hepatocytes, and that glucose stimulated insulin secretion and the response tometabolic stress, e.g., glucolipotoxicity, in β-cells. In vivo overexpression of G3PP in rat liver lowers body weight gain and hepatic glucose production from glycerol and elevates plasma HDL levels. G3PP is expressed at various levels in different tissues, and its expression varies according to the nutritional state in some tissues. As Gro3P lies at the crossroads of glucose, lipid, and energy metabolism, control of its availability by G3PP adds a key level of metabolic regulation in mammalian cells, and G3PP offers a potential target for type 2 diabetes and cardiometabolic disorders.
doi_str_mv 10.1073/pnas.1514375113
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1514375113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26467547</jstor_id><sourcerecordid>26467547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-11554600cedd276924be6931d7f065e66343fd37c421575e8d2f459f7c7ddb8c3</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhQdRbK2uXSn5A2nnzjPZFESqFgpudD1M59GmJJmQiUL_vQm1ta7uhXvOdw8HoXvAU8CSzppaxylwYFRyAHqBxoBzSAXL8SUaY0xkmjHCRugmxh3GOOcZvkYjIiTnPIMxmi-tq7vCF0Z3RaiT4BOdVLqqdFnoOtmUe-PaUKY0bbYhNlvdueS46ehu0ZXXZXR3v3OCPl8WH89v6er9dfn8tEoNo1mXAnDOBMbGWUukyAlbO5FTsNJjwZ0QlFFvqTSMAJfcZZZ4xnMvjbR2nRk6QfMDt_laV86aPnOrS9W0RaXbvQq6UP8vdbFVm_CtmOwDENwDZgeAaUOMrfMnL2A1VKmGKtVflb3j8fzlSX_s7kwwOE84oIqpBaPDz4eDYBe70J4BWI9gkv4AWQqEVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mugabo, Yves ; Zhao, Shangang ; Seifried, Annegrit ; Gezzar, Sari ; Al-Mass, Anfal ; Zhang, Dongwei ; Lamontagne, Julien ; Attane, Camille ; Poursharifi, Pegah ; Iglesias, José ; Joly, Erik ; Peyot, Marie-Line ; Gohla, Antje ; Madiraju, S. R. Murthy ; Prentki, Marc</creator><creatorcontrib>Mugabo, Yves ; Zhao, Shangang ; Seifried, Annegrit ; Gezzar, Sari ; Al-Mass, Anfal ; Zhang, Dongwei ; Lamontagne, Julien ; Attane, Camille ; Poursharifi, Pegah ; Iglesias, José ; Joly, Erik ; Peyot, Marie-Line ; Gohla, Antje ; Madiraju, S. R. Murthy ; Prentki, Marc</creatorcontrib><description>Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here amammalian Gro3P phosphatase (G3PP), which was not known to exist in mammalian cells, that can directly hydrolyze Gro3P to glycerol. We identified that mammalian phosphoglycolate phosphatase, with an uncertain function, acts in fact as a G3PP. We found that G3PP, by controlling Gro3P levels, regulates glycolysis and glucose oxidation, cellular redox and ATP production, gluconeogenesis, glycerolipid synthesis, and fatty acid oxidation in pancreatic islet β-cells and hepatocytes, and that glucose stimulated insulin secretion and the response tometabolic stress, e.g., glucolipotoxicity, in β-cells. In vivo overexpression of G3PP in rat liver lowers body weight gain and hepatic glucose production from glycerol and elevates plasma HDL levels. G3PP is expressed at various levels in different tissues, and its expression varies according to the nutritional state in some tissues. As Gro3P lies at the crossroads of glucose, lipid, and energy metabolism, control of its availability by G3PP adds a key level of metabolic regulation in mammalian cells, and G3PP offers a potential target for type 2 diabetes and cardiometabolic disorders.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1514375113</identifier><identifier>PMID: 26755581</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Animals ; Biological Sciences ; Carbohydrate Metabolism - physiology ; Cell Line ; Fatty Acids - metabolism ; Glycerol - metabolism ; Glycerophosphates - metabolism ; Hepatocytes - enzymology ; Hydrolysis ; Insulin - metabolism ; Insulin Secretion ; Insulin-Secreting Cells - drug effects ; Insulin-Secreting Cells - enzymology ; Insulin-Secreting Cells - metabolism ; Lactones - pharmacology ; Lipid Metabolism - physiology ; Male ; Mice ; Mitochondria, Liver - metabolism ; Mitochondrial Proteins - metabolism ; Molecular Sequence Data ; Nutritional Status ; Orlistat ; Phosphoric Monoester Hydrolases - antagonists &amp; inhibitors ; Phosphoric Monoester Hydrolases - genetics ; Phosphoric Monoester Hydrolases - physiology ; PNAS Plus ; Rats ; RNA Interference ; Sequence Homology, Amino Acid ; Signal Transduction - physiology ; Stress, Physiological - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-01, Vol.113 (4), p.E430-E439</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-11554600cedd276924be6931d7f065e66343fd37c421575e8d2f459f7c7ddb8c3</citedby><cites>FETCH-LOGICAL-c438t-11554600cedd276924be6931d7f065e66343fd37c421575e8d2f459f7c7ddb8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/4.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26467547$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26467547$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26755581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mugabo, Yves</creatorcontrib><creatorcontrib>Zhao, Shangang</creatorcontrib><creatorcontrib>Seifried, Annegrit</creatorcontrib><creatorcontrib>Gezzar, Sari</creatorcontrib><creatorcontrib>Al-Mass, Anfal</creatorcontrib><creatorcontrib>Zhang, Dongwei</creatorcontrib><creatorcontrib>Lamontagne, Julien</creatorcontrib><creatorcontrib>Attane, Camille</creatorcontrib><creatorcontrib>Poursharifi, Pegah</creatorcontrib><creatorcontrib>Iglesias, José</creatorcontrib><creatorcontrib>Joly, Erik</creatorcontrib><creatorcontrib>Peyot, Marie-Line</creatorcontrib><creatorcontrib>Gohla, Antje</creatorcontrib><creatorcontrib>Madiraju, S. R. Murthy</creatorcontrib><creatorcontrib>Prentki, Marc</creatorcontrib><title>Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here amammalian Gro3P phosphatase (G3PP), which was not known to exist in mammalian cells, that can directly hydrolyze Gro3P to glycerol. We identified that mammalian phosphoglycolate phosphatase, with an uncertain function, acts in fact as a G3PP. We found that G3PP, by controlling Gro3P levels, regulates glycolysis and glucose oxidation, cellular redox and ATP production, gluconeogenesis, glycerolipid synthesis, and fatty acid oxidation in pancreatic islet β-cells and hepatocytes, and that glucose stimulated insulin secretion and the response tometabolic stress, e.g., glucolipotoxicity, in β-cells. In vivo overexpression of G3PP in rat liver lowers body weight gain and hepatic glucose production from glycerol and elevates plasma HDL levels. G3PP is expressed at various levels in different tissues, and its expression varies according to the nutritional state in some tissues. As Gro3P lies at the crossroads of glucose, lipid, and energy metabolism, control of its availability by G3PP adds a key level of metabolic regulation in mammalian cells, and G3PP offers a potential target for type 2 diabetes and cardiometabolic disorders.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Carbohydrate Metabolism - physiology</subject><subject>Cell Line</subject><subject>Fatty Acids - metabolism</subject><subject>Glycerol - metabolism</subject><subject>Glycerophosphates - metabolism</subject><subject>Hepatocytes - enzymology</subject><subject>Hydrolysis</subject><subject>Insulin - metabolism</subject><subject>Insulin Secretion</subject><subject>Insulin-Secreting Cells - drug effects</subject><subject>Insulin-Secreting Cells - enzymology</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Lactones - pharmacology</subject><subject>Lipid Metabolism - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Nutritional Status</subject><subject>Orlistat</subject><subject>Phosphoric Monoester Hydrolases - antagonists &amp; inhibitors</subject><subject>Phosphoric Monoester Hydrolases - genetics</subject><subject>Phosphoric Monoester Hydrolases - physiology</subject><subject>PNAS Plus</subject><subject>Rats</subject><subject>RNA Interference</subject><subject>Sequence Homology, Amino Acid</subject><subject>Signal Transduction - physiology</subject><subject>Stress, Physiological - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEtLw0AUhQdRbK2uXSn5A2nnzjPZFESqFgpudD1M59GmJJmQiUL_vQm1ta7uhXvOdw8HoXvAU8CSzppaxylwYFRyAHqBxoBzSAXL8SUaY0xkmjHCRugmxh3GOOcZvkYjIiTnPIMxmi-tq7vCF0Z3RaiT4BOdVLqqdFnoOtmUe-PaUKY0bbYhNlvdueS46ehu0ZXXZXR3v3OCPl8WH89v6er9dfn8tEoNo1mXAnDOBMbGWUukyAlbO5FTsNJjwZ0QlFFvqTSMAJfcZZZ4xnMvjbR2nRk6QfMDt_laV86aPnOrS9W0RaXbvQq6UP8vdbFVm_CtmOwDENwDZgeAaUOMrfMnL2A1VKmGKtVflb3j8fzlSX_s7kwwOE84oIqpBaPDz4eDYBe70J4BWI9gkv4AWQqEVg</recordid><startdate>20160126</startdate><enddate>20160126</enddate><creator>Mugabo, Yves</creator><creator>Zhao, Shangang</creator><creator>Seifried, Annegrit</creator><creator>Gezzar, Sari</creator><creator>Al-Mass, Anfal</creator><creator>Zhang, Dongwei</creator><creator>Lamontagne, Julien</creator><creator>Attane, Camille</creator><creator>Poursharifi, Pegah</creator><creator>Iglesias, José</creator><creator>Joly, Erik</creator><creator>Peyot, Marie-Line</creator><creator>Gohla, Antje</creator><creator>Madiraju, S. R. Murthy</creator><creator>Prentki, Marc</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20160126</creationdate><title>Identification of a mammalian glycerol-3-phosphate phosphatase</title><author>Mugabo, Yves ; Zhao, Shangang ; Seifried, Annegrit ; Gezzar, Sari ; Al-Mass, Anfal ; Zhang, Dongwei ; Lamontagne, Julien ; Attane, Camille ; Poursharifi, Pegah ; Iglesias, José ; Joly, Erik ; Peyot, Marie-Line ; Gohla, Antje ; Madiraju, S. R. Murthy ; Prentki, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-11554600cedd276924be6931d7f065e66343fd37c421575e8d2f459f7c7ddb8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Carbohydrate Metabolism - physiology</topic><topic>Cell Line</topic><topic>Fatty Acids - metabolism</topic><topic>Glycerol - metabolism</topic><topic>Glycerophosphates - metabolism</topic><topic>Hepatocytes - enzymology</topic><topic>Hydrolysis</topic><topic>Insulin - metabolism</topic><topic>Insulin Secretion</topic><topic>Insulin-Secreting Cells - drug effects</topic><topic>Insulin-Secreting Cells - enzymology</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Lactones - pharmacology</topic><topic>Lipid Metabolism - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Nutritional Status</topic><topic>Orlistat</topic><topic>Phosphoric Monoester Hydrolases - antagonists &amp; inhibitors</topic><topic>Phosphoric Monoester Hydrolases - genetics</topic><topic>Phosphoric Monoester Hydrolases - physiology</topic><topic>PNAS Plus</topic><topic>Rats</topic><topic>RNA Interference</topic><topic>Sequence Homology, Amino Acid</topic><topic>Signal Transduction - physiology</topic><topic>Stress, Physiological - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mugabo, Yves</creatorcontrib><creatorcontrib>Zhao, Shangang</creatorcontrib><creatorcontrib>Seifried, Annegrit</creatorcontrib><creatorcontrib>Gezzar, Sari</creatorcontrib><creatorcontrib>Al-Mass, Anfal</creatorcontrib><creatorcontrib>Zhang, Dongwei</creatorcontrib><creatorcontrib>Lamontagne, Julien</creatorcontrib><creatorcontrib>Attane, Camille</creatorcontrib><creatorcontrib>Poursharifi, Pegah</creatorcontrib><creatorcontrib>Iglesias, José</creatorcontrib><creatorcontrib>Joly, Erik</creatorcontrib><creatorcontrib>Peyot, Marie-Line</creatorcontrib><creatorcontrib>Gohla, Antje</creatorcontrib><creatorcontrib>Madiraju, S. R. Murthy</creatorcontrib><creatorcontrib>Prentki, Marc</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mugabo, Yves</au><au>Zhao, Shangang</au><au>Seifried, Annegrit</au><au>Gezzar, Sari</au><au>Al-Mass, Anfal</au><au>Zhang, Dongwei</au><au>Lamontagne, Julien</au><au>Attane, Camille</au><au>Poursharifi, Pegah</au><au>Iglesias, José</au><au>Joly, Erik</au><au>Peyot, Marie-Line</au><au>Gohla, Antje</au><au>Madiraju, S. R. Murthy</au><au>Prentki, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-01-26</date><risdate>2016</risdate><volume>113</volume><issue>4</issue><spage>E430</spage><epage>E439</epage><pages>E430-E439</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here amammalian Gro3P phosphatase (G3PP), which was not known to exist in mammalian cells, that can directly hydrolyze Gro3P to glycerol. We identified that mammalian phosphoglycolate phosphatase, with an uncertain function, acts in fact as a G3PP. We found that G3PP, by controlling Gro3P levels, regulates glycolysis and glucose oxidation, cellular redox and ATP production, gluconeogenesis, glycerolipid synthesis, and fatty acid oxidation in pancreatic islet β-cells and hepatocytes, and that glucose stimulated insulin secretion and the response tometabolic stress, e.g., glucolipotoxicity, in β-cells. In vivo overexpression of G3PP in rat liver lowers body weight gain and hepatic glucose production from glycerol and elevates plasma HDL levels. G3PP is expressed at various levels in different tissues, and its expression varies according to the nutritional state in some tissues. As Gro3P lies at the crossroads of glucose, lipid, and energy metabolism, control of its availability by G3PP adds a key level of metabolic regulation in mammalian cells, and G3PP offers a potential target for type 2 diabetes and cardiometabolic disorders.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26755581</pmid><doi>10.1073/pnas.1514375113</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-01, Vol.113 (4), p.E430-E439
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1514375113
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Animals
Biological Sciences
Carbohydrate Metabolism - physiology
Cell Line
Fatty Acids - metabolism
Glycerol - metabolism
Glycerophosphates - metabolism
Hepatocytes - enzymology
Hydrolysis
Insulin - metabolism
Insulin Secretion
Insulin-Secreting Cells - drug effects
Insulin-Secreting Cells - enzymology
Insulin-Secreting Cells - metabolism
Lactones - pharmacology
Lipid Metabolism - physiology
Male
Mice
Mitochondria, Liver - metabolism
Mitochondrial Proteins - metabolism
Molecular Sequence Data
Nutritional Status
Orlistat
Phosphoric Monoester Hydrolases - antagonists & inhibitors
Phosphoric Monoester Hydrolases - genetics
Phosphoric Monoester Hydrolases - physiology
PNAS Plus
Rats
RNA Interference
Sequence Homology, Amino Acid
Signal Transduction - physiology
Stress, Physiological - physiology
title Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A11%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20mammalian%20glycerol-3-phosphate%20phosphatase:%20Role%20in%20metabolism%20and%20signaling%20in%20pancreatic%20%CE%B2-cells%20and%20hepatocytes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mugabo,%20Yves&rft.date=2016-01-26&rft.volume=113&rft.issue=4&rft.spage=E430&rft.epage=E439&rft.pages=E430-E439&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1514375113&rft_dat=%3Cjstor_cross%3E26467547%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26755581&rft_jstor_id=26467547&rfr_iscdi=true