Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes
Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here amammalian Gro3...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-01, Vol.113 (4), p.E430-E439 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E439 |
---|---|
container_issue | 4 |
container_start_page | E430 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Mugabo, Yves Zhao, Shangang Seifried, Annegrit Gezzar, Sari Al-Mass, Anfal Zhang, Dongwei Lamontagne, Julien Attane, Camille Poursharifi, Pegah Iglesias, José Joly, Erik Peyot, Marie-Line Gohla, Antje Madiraju, S. R. Murthy Prentki, Marc |
description | Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here amammalian Gro3P phosphatase (G3PP), which was not known to exist in mammalian cells, that can directly hydrolyze Gro3P to glycerol. We identified that mammalian phosphoglycolate phosphatase, with an uncertain function, acts in fact as a G3PP. We found that G3PP, by controlling Gro3P levels, regulates glycolysis and glucose oxidation, cellular redox and ATP production, gluconeogenesis, glycerolipid synthesis, and fatty acid oxidation in pancreatic islet β-cells and hepatocytes, and that glucose stimulated insulin secretion and the response tometabolic stress, e.g., glucolipotoxicity, in β-cells. In vivo overexpression of G3PP in rat liver lowers body weight gain and hepatic glucose production from glycerol and elevates plasma HDL levels. G3PP is expressed at various levels in different tissues, and its expression varies according to the nutritional state in some tissues. As Gro3P lies at the crossroads of glucose, lipid, and energy metabolism, control of its availability by G3PP adds a key level of metabolic regulation in mammalian cells, and G3PP offers a potential target for type 2 diabetes and cardiometabolic disorders. |
doi_str_mv | 10.1073/pnas.1514375113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1514375113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26467547</jstor_id><sourcerecordid>26467547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-11554600cedd276924be6931d7f065e66343fd37c421575e8d2f459f7c7ddb8c3</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhQdRbK2uXSn5A2nnzjPZFESqFgpudD1M59GmJJmQiUL_vQm1ta7uhXvOdw8HoXvAU8CSzppaxylwYFRyAHqBxoBzSAXL8SUaY0xkmjHCRugmxh3GOOcZvkYjIiTnPIMxmi-tq7vCF0Z3RaiT4BOdVLqqdFnoOtmUe-PaUKY0bbYhNlvdueS46ehu0ZXXZXR3v3OCPl8WH89v6er9dfn8tEoNo1mXAnDOBMbGWUukyAlbO5FTsNJjwZ0QlFFvqTSMAJfcZZZ4xnMvjbR2nRk6QfMDt_laV86aPnOrS9W0RaXbvQq6UP8vdbFVm_CtmOwDENwDZgeAaUOMrfMnL2A1VKmGKtVflb3j8fzlSX_s7kwwOE84oIqpBaPDz4eDYBe70J4BWI9gkv4AWQqEVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mugabo, Yves ; Zhao, Shangang ; Seifried, Annegrit ; Gezzar, Sari ; Al-Mass, Anfal ; Zhang, Dongwei ; Lamontagne, Julien ; Attane, Camille ; Poursharifi, Pegah ; Iglesias, José ; Joly, Erik ; Peyot, Marie-Line ; Gohla, Antje ; Madiraju, S. R. Murthy ; Prentki, Marc</creator><creatorcontrib>Mugabo, Yves ; Zhao, Shangang ; Seifried, Annegrit ; Gezzar, Sari ; Al-Mass, Anfal ; Zhang, Dongwei ; Lamontagne, Julien ; Attane, Camille ; Poursharifi, Pegah ; Iglesias, José ; Joly, Erik ; Peyot, Marie-Line ; Gohla, Antje ; Madiraju, S. R. Murthy ; Prentki, Marc</creatorcontrib><description>Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here amammalian Gro3P phosphatase (G3PP), which was not known to exist in mammalian cells, that can directly hydrolyze Gro3P to glycerol. We identified that mammalian phosphoglycolate phosphatase, with an uncertain function, acts in fact as a G3PP. We found that G3PP, by controlling Gro3P levels, regulates glycolysis and glucose oxidation, cellular redox and ATP production, gluconeogenesis, glycerolipid synthesis, and fatty acid oxidation in pancreatic islet β-cells and hepatocytes, and that glucose stimulated insulin secretion and the response tometabolic stress, e.g., glucolipotoxicity, in β-cells. In vivo overexpression of G3PP in rat liver lowers body weight gain and hepatic glucose production from glycerol and elevates plasma HDL levels. G3PP is expressed at various levels in different tissues, and its expression varies according to the nutritional state in some tissues. As Gro3P lies at the crossroads of glucose, lipid, and energy metabolism, control of its availability by G3PP adds a key level of metabolic regulation in mammalian cells, and G3PP offers a potential target for type 2 diabetes and cardiometabolic disorders.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1514375113</identifier><identifier>PMID: 26755581</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Animals ; Biological Sciences ; Carbohydrate Metabolism - physiology ; Cell Line ; Fatty Acids - metabolism ; Glycerol - metabolism ; Glycerophosphates - metabolism ; Hepatocytes - enzymology ; Hydrolysis ; Insulin - metabolism ; Insulin Secretion ; Insulin-Secreting Cells - drug effects ; Insulin-Secreting Cells - enzymology ; Insulin-Secreting Cells - metabolism ; Lactones - pharmacology ; Lipid Metabolism - physiology ; Male ; Mice ; Mitochondria, Liver - metabolism ; Mitochondrial Proteins - metabolism ; Molecular Sequence Data ; Nutritional Status ; Orlistat ; Phosphoric Monoester Hydrolases - antagonists & inhibitors ; Phosphoric Monoester Hydrolases - genetics ; Phosphoric Monoester Hydrolases - physiology ; PNAS Plus ; Rats ; RNA Interference ; Sequence Homology, Amino Acid ; Signal Transduction - physiology ; Stress, Physiological - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-01, Vol.113 (4), p.E430-E439</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-11554600cedd276924be6931d7f065e66343fd37c421575e8d2f459f7c7ddb8c3</citedby><cites>FETCH-LOGICAL-c438t-11554600cedd276924be6931d7f065e66343fd37c421575e8d2f459f7c7ddb8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/4.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26467547$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26467547$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26755581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mugabo, Yves</creatorcontrib><creatorcontrib>Zhao, Shangang</creatorcontrib><creatorcontrib>Seifried, Annegrit</creatorcontrib><creatorcontrib>Gezzar, Sari</creatorcontrib><creatorcontrib>Al-Mass, Anfal</creatorcontrib><creatorcontrib>Zhang, Dongwei</creatorcontrib><creatorcontrib>Lamontagne, Julien</creatorcontrib><creatorcontrib>Attane, Camille</creatorcontrib><creatorcontrib>Poursharifi, Pegah</creatorcontrib><creatorcontrib>Iglesias, José</creatorcontrib><creatorcontrib>Joly, Erik</creatorcontrib><creatorcontrib>Peyot, Marie-Line</creatorcontrib><creatorcontrib>Gohla, Antje</creatorcontrib><creatorcontrib>Madiraju, S. R. Murthy</creatorcontrib><creatorcontrib>Prentki, Marc</creatorcontrib><title>Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here amammalian Gro3P phosphatase (G3PP), which was not known to exist in mammalian cells, that can directly hydrolyze Gro3P to glycerol. We identified that mammalian phosphoglycolate phosphatase, with an uncertain function, acts in fact as a G3PP. We found that G3PP, by controlling Gro3P levels, regulates glycolysis and glucose oxidation, cellular redox and ATP production, gluconeogenesis, glycerolipid synthesis, and fatty acid oxidation in pancreatic islet β-cells and hepatocytes, and that glucose stimulated insulin secretion and the response tometabolic stress, e.g., glucolipotoxicity, in β-cells. In vivo overexpression of G3PP in rat liver lowers body weight gain and hepatic glucose production from glycerol and elevates plasma HDL levels. G3PP is expressed at various levels in different tissues, and its expression varies according to the nutritional state in some tissues. As Gro3P lies at the crossroads of glucose, lipid, and energy metabolism, control of its availability by G3PP adds a key level of metabolic regulation in mammalian cells, and G3PP offers a potential target for type 2 diabetes and cardiometabolic disorders.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Carbohydrate Metabolism - physiology</subject><subject>Cell Line</subject><subject>Fatty Acids - metabolism</subject><subject>Glycerol - metabolism</subject><subject>Glycerophosphates - metabolism</subject><subject>Hepatocytes - enzymology</subject><subject>Hydrolysis</subject><subject>Insulin - metabolism</subject><subject>Insulin Secretion</subject><subject>Insulin-Secreting Cells - drug effects</subject><subject>Insulin-Secreting Cells - enzymology</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Lactones - pharmacology</subject><subject>Lipid Metabolism - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Nutritional Status</subject><subject>Orlistat</subject><subject>Phosphoric Monoester Hydrolases - antagonists & inhibitors</subject><subject>Phosphoric Monoester Hydrolases - genetics</subject><subject>Phosphoric Monoester Hydrolases - physiology</subject><subject>PNAS Plus</subject><subject>Rats</subject><subject>RNA Interference</subject><subject>Sequence Homology, Amino Acid</subject><subject>Signal Transduction - physiology</subject><subject>Stress, Physiological - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEtLw0AUhQdRbK2uXSn5A2nnzjPZFESqFgpudD1M59GmJJmQiUL_vQm1ta7uhXvOdw8HoXvAU8CSzppaxylwYFRyAHqBxoBzSAXL8SUaY0xkmjHCRugmxh3GOOcZvkYjIiTnPIMxmi-tq7vCF0Z3RaiT4BOdVLqqdFnoOtmUe-PaUKY0bbYhNlvdueS46ehu0ZXXZXR3v3OCPl8WH89v6er9dfn8tEoNo1mXAnDOBMbGWUukyAlbO5FTsNJjwZ0QlFFvqTSMAJfcZZZ4xnMvjbR2nRk6QfMDt_laV86aPnOrS9W0RaXbvQq6UP8vdbFVm_CtmOwDENwDZgeAaUOMrfMnL2A1VKmGKtVflb3j8fzlSX_s7kwwOE84oIqpBaPDz4eDYBe70J4BWI9gkv4AWQqEVg</recordid><startdate>20160126</startdate><enddate>20160126</enddate><creator>Mugabo, Yves</creator><creator>Zhao, Shangang</creator><creator>Seifried, Annegrit</creator><creator>Gezzar, Sari</creator><creator>Al-Mass, Anfal</creator><creator>Zhang, Dongwei</creator><creator>Lamontagne, Julien</creator><creator>Attane, Camille</creator><creator>Poursharifi, Pegah</creator><creator>Iglesias, José</creator><creator>Joly, Erik</creator><creator>Peyot, Marie-Line</creator><creator>Gohla, Antje</creator><creator>Madiraju, S. R. Murthy</creator><creator>Prentki, Marc</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20160126</creationdate><title>Identification of a mammalian glycerol-3-phosphate phosphatase</title><author>Mugabo, Yves ; Zhao, Shangang ; Seifried, Annegrit ; Gezzar, Sari ; Al-Mass, Anfal ; Zhang, Dongwei ; Lamontagne, Julien ; Attane, Camille ; Poursharifi, Pegah ; Iglesias, José ; Joly, Erik ; Peyot, Marie-Line ; Gohla, Antje ; Madiraju, S. R. Murthy ; Prentki, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-11554600cedd276924be6931d7f065e66343fd37c421575e8d2f459f7c7ddb8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Carbohydrate Metabolism - physiology</topic><topic>Cell Line</topic><topic>Fatty Acids - metabolism</topic><topic>Glycerol - metabolism</topic><topic>Glycerophosphates - metabolism</topic><topic>Hepatocytes - enzymology</topic><topic>Hydrolysis</topic><topic>Insulin - metabolism</topic><topic>Insulin Secretion</topic><topic>Insulin-Secreting Cells - drug effects</topic><topic>Insulin-Secreting Cells - enzymology</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Lactones - pharmacology</topic><topic>Lipid Metabolism - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Nutritional Status</topic><topic>Orlistat</topic><topic>Phosphoric Monoester Hydrolases - antagonists & inhibitors</topic><topic>Phosphoric Monoester Hydrolases - genetics</topic><topic>Phosphoric Monoester Hydrolases - physiology</topic><topic>PNAS Plus</topic><topic>Rats</topic><topic>RNA Interference</topic><topic>Sequence Homology, Amino Acid</topic><topic>Signal Transduction - physiology</topic><topic>Stress, Physiological - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mugabo, Yves</creatorcontrib><creatorcontrib>Zhao, Shangang</creatorcontrib><creatorcontrib>Seifried, Annegrit</creatorcontrib><creatorcontrib>Gezzar, Sari</creatorcontrib><creatorcontrib>Al-Mass, Anfal</creatorcontrib><creatorcontrib>Zhang, Dongwei</creatorcontrib><creatorcontrib>Lamontagne, Julien</creatorcontrib><creatorcontrib>Attane, Camille</creatorcontrib><creatorcontrib>Poursharifi, Pegah</creatorcontrib><creatorcontrib>Iglesias, José</creatorcontrib><creatorcontrib>Joly, Erik</creatorcontrib><creatorcontrib>Peyot, Marie-Line</creatorcontrib><creatorcontrib>Gohla, Antje</creatorcontrib><creatorcontrib>Madiraju, S. R. Murthy</creatorcontrib><creatorcontrib>Prentki, Marc</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mugabo, Yves</au><au>Zhao, Shangang</au><au>Seifried, Annegrit</au><au>Gezzar, Sari</au><au>Al-Mass, Anfal</au><au>Zhang, Dongwei</au><au>Lamontagne, Julien</au><au>Attane, Camille</au><au>Poursharifi, Pegah</au><au>Iglesias, José</au><au>Joly, Erik</au><au>Peyot, Marie-Line</au><au>Gohla, Antje</au><au>Madiraju, S. R. Murthy</au><au>Prentki, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-01-26</date><risdate>2016</risdate><volume>113</volume><issue>4</issue><spage>E430</spage><epage>E439</epage><pages>E430-E439</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here amammalian Gro3P phosphatase (G3PP), which was not known to exist in mammalian cells, that can directly hydrolyze Gro3P to glycerol. We identified that mammalian phosphoglycolate phosphatase, with an uncertain function, acts in fact as a G3PP. We found that G3PP, by controlling Gro3P levels, regulates glycolysis and glucose oxidation, cellular redox and ATP production, gluconeogenesis, glycerolipid synthesis, and fatty acid oxidation in pancreatic islet β-cells and hepatocytes, and that glucose stimulated insulin secretion and the response tometabolic stress, e.g., glucolipotoxicity, in β-cells. In vivo overexpression of G3PP in rat liver lowers body weight gain and hepatic glucose production from glycerol and elevates plasma HDL levels. G3PP is expressed at various levels in different tissues, and its expression varies according to the nutritional state in some tissues. As Gro3P lies at the crossroads of glucose, lipid, and energy metabolism, control of its availability by G3PP adds a key level of metabolic regulation in mammalian cells, and G3PP offers a potential target for type 2 diabetes and cardiometabolic disorders.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26755581</pmid><doi>10.1073/pnas.1514375113</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-01, Vol.113 (4), p.E430-E439 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1514375113 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Animals Biological Sciences Carbohydrate Metabolism - physiology Cell Line Fatty Acids - metabolism Glycerol - metabolism Glycerophosphates - metabolism Hepatocytes - enzymology Hydrolysis Insulin - metabolism Insulin Secretion Insulin-Secreting Cells - drug effects Insulin-Secreting Cells - enzymology Insulin-Secreting Cells - metabolism Lactones - pharmacology Lipid Metabolism - physiology Male Mice Mitochondria, Liver - metabolism Mitochondrial Proteins - metabolism Molecular Sequence Data Nutritional Status Orlistat Phosphoric Monoester Hydrolases - antagonists & inhibitors Phosphoric Monoester Hydrolases - genetics Phosphoric Monoester Hydrolases - physiology PNAS Plus Rats RNA Interference Sequence Homology, Amino Acid Signal Transduction - physiology Stress, Physiological - physiology |
title | Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A11%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20mammalian%20glycerol-3-phosphate%20phosphatase:%20Role%20in%20metabolism%20and%20signaling%20in%20pancreatic%20%CE%B2-cells%20and%20hepatocytes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mugabo,%20Yves&rft.date=2016-01-26&rft.volume=113&rft.issue=4&rft.spage=E430&rft.epage=E439&rft.pages=E430-E439&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1514375113&rft_dat=%3Cjstor_cross%3E26467547%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26755581&rft_jstor_id=26467547&rfr_iscdi=true |