Wetting hysteresis induced by nanodefects
Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects,...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-01, Vol.113 (3), p.E262-E271 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E271 |
---|---|
container_issue | 3 |
container_start_page | E262 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Giacomello, Alberto Schimmele, Lothar Dietrich, Siegfried |
description | Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles. |
doi_str_mv | 10.1073/pnas.1513942113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1513942113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26467470</jstor_id><sourcerecordid>26467470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-801157b58f79f64a7dac1cf5cc4f9ff4d33ee3483810c9ba67175ef7cc86f50c3</originalsourceid><addsrcrecordid>eNqNkUtLAzEURoMotj7WrpSCG12Mzc1zshGk-ALBjeIypJmkndJmajIj9N87Q7VWV66yyPlOcu-H0AngK8CSDpfBpCvgQBUjAHQH9QEryARTeBf1MSYyyxlhPXSQ0gxjrHiO91GPCEnaDO-jyzdX12WYDKarVLvoUpkGZSga64rBeDUIJlSF887W6QjteTNP7vjrPESvd7cvo4fs6fn-cXTzlFkueJ3lGIDLMc-9VF4wIwtjwXpuLfPKe1ZQ6hxlOc0BWzU2QoLkzktrc-E5tvQQXa-9y2a8cIV1oY5mrpexXJi40pUp9e-bUE71pPrQTBLOKW4FF1-CWL03LtV6USbr5nMTXNUkDVJwxXLC_oW261RKdOj5H3RWNTG0m-gokIwBJy01XFM2VilF5zf_Bqy7xnTXmP5prE2cbY-74b8r2gK65EYHVFN9S0T35ukamKW6ilsCJiSTmH4C1NOkxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761744152</pqid></control><display><type>article</type><title>Wetting hysteresis induced by nanodefects</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Giacomello, Alberto ; Schimmele, Lothar ; Dietrich, Siegfried</creator><creatorcontrib>Giacomello, Alberto ; Schimmele, Lothar ; Dietrich, Siegfried</creatorcontrib><description>Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1513942113</identifier><identifier>PMID: 26721395</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Experiments ; Fluid dynamics ; Microscopy ; Nanoparticles ; Physical Sciences ; PNAS Plus ; Topography</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-01, Vol.113 (3), p.E262-E271</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 19, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-801157b58f79f64a7dac1cf5cc4f9ff4d33ee3483810c9ba67175ef7cc86f50c3</citedby><cites>FETCH-LOGICAL-c565t-801157b58f79f64a7dac1cf5cc4f9ff4d33ee3483810c9ba67175ef7cc86f50c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26467470$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26467470$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26721395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giacomello, Alberto</creatorcontrib><creatorcontrib>Schimmele, Lothar</creatorcontrib><creatorcontrib>Dietrich, Siegfried</creatorcontrib><title>Wetting hysteresis induced by nanodefects</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles.</description><subject>Experiments</subject><subject>Fluid dynamics</subject><subject>Microscopy</subject><subject>Nanoparticles</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>Topography</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLAzEURoMotj7WrpSCG12Mzc1zshGk-ALBjeIypJmkndJmajIj9N87Q7VWV66yyPlOcu-H0AngK8CSDpfBpCvgQBUjAHQH9QEryARTeBf1MSYyyxlhPXSQ0gxjrHiO91GPCEnaDO-jyzdX12WYDKarVLvoUpkGZSga64rBeDUIJlSF887W6QjteTNP7vjrPESvd7cvo4fs6fn-cXTzlFkueJ3lGIDLMc-9VF4wIwtjwXpuLfPKe1ZQ6hxlOc0BWzU2QoLkzktrc-E5tvQQXa-9y2a8cIV1oY5mrpexXJi40pUp9e-bUE71pPrQTBLOKW4FF1-CWL03LtV6USbr5nMTXNUkDVJwxXLC_oW261RKdOj5H3RWNTG0m-gokIwBJy01XFM2VilF5zf_Bqy7xnTXmP5prE2cbY-74b8r2gK65EYHVFN9S0T35ukamKW6ilsCJiSTmH4C1NOkxQ</recordid><startdate>20160119</startdate><enddate>20160119</enddate><creator>Giacomello, Alberto</creator><creator>Schimmele, Lothar</creator><creator>Dietrich, Siegfried</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7ST</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20160119</creationdate><title>Wetting hysteresis induced by nanodefects</title><author>Giacomello, Alberto ; Schimmele, Lothar ; Dietrich, Siegfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-801157b58f79f64a7dac1cf5cc4f9ff4d33ee3483810c9ba67175ef7cc86f50c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Experiments</topic><topic>Fluid dynamics</topic><topic>Microscopy</topic><topic>Nanoparticles</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giacomello, Alberto</creatorcontrib><creatorcontrib>Schimmele, Lothar</creatorcontrib><creatorcontrib>Dietrich, Siegfried</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giacomello, Alberto</au><au>Schimmele, Lothar</au><au>Dietrich, Siegfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wetting hysteresis induced by nanodefects</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-01-19</date><risdate>2016</risdate><volume>113</volume><issue>3</issue><spage>E262</spage><epage>E271</epage><pages>E262-E271</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26721395</pmid><doi>10.1073/pnas.1513942113</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-01, Vol.113 (3), p.E262-E271 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1513942113 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Experiments Fluid dynamics Microscopy Nanoparticles Physical Sciences PNAS Plus Topography |
title | Wetting hysteresis induced by nanodefects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wetting%20hysteresis%20induced%20by%20nanodefects&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Giacomello,%20Alberto&rft.date=2016-01-19&rft.volume=113&rft.issue=3&rft.spage=E262&rft.epage=E271&rft.pages=E262-E271&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1513942113&rft_dat=%3Cjstor_cross%3E26467470%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761744152&rft_id=info:pmid/26721395&rft_jstor_id=26467470&rfr_iscdi=true |