Habitual control of goal selection in humans

Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-11, Vol.112 (45), p.13817-13822
Hauptverfasser: Cushman, Fiery, Morris, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13822
container_issue 45
container_start_page 13817
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Cushman, Fiery
Morris, Adam
description Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral control, yetmany complex tasks instead favor their integration. We consider a hierarchical architecture that exploits the computational efficiency of habitual control to select goals while preserving the flexibility of planning to achieve those goals. We formalize this mechanism in a reinforcement learning setting, illustrate its costs and benefits, and experimentally demonstrate its spontaneous application in a sequential decision-making task.
doi_str_mv 10.1073/pnas.1506367112
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1506367112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26466328</jstor_id><sourcerecordid>26466328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-66b655349be207ffbaccf8347cf76605d51c2e84aeaaaf62cf19b59968ce27b23</originalsourceid><addsrcrecordid>eNpdkctLAzEQxoMoWqtnT8qCFw9uO3nvXgQRX1DwoueQTRPdst3UZFfwvzdLa31cMgnzmy8z8yF0gmGCQdLpqtVxgjkIKiTGZAeNMJQ4F6yEXTQCIDIvGGEH6DDGBQCUvIB9dEAEEwAcRujyQVd11-smM77tgm8y77JXn97RNtZ0tW-zus3e-qVu4xHac7qJ9ngTx-jl7vb55iGfPd0_3lzPcsMp63IhKsHTrawsAelcpY1xBWXSOCkE8DnHhtiCaau1doIYh8uKl6UojCWyInSMrta6q75a2rmxqTPdqFWolzp8Kq9r9TfT1m_q1X8oJjglBCeBi41A8O-9jZ1a1tHYptGt9X1UWFIiAKf9JPT8H7rwfWjTeAPFJC2HY4yma8oEH2OwbtsMBjU4oQYn1I8TqeLs9wxb_nv1Ccg2wFC5lcNEMa4wLfDw6-kaWcTOhz8SgpKCfgEatJf3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734739347</pqid></control><display><type>article</type><title>Habitual control of goal selection in humans</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cushman, Fiery ; Morris, Adam</creator><creatorcontrib>Cushman, Fiery ; Morris, Adam</creatorcontrib><description>Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral control, yetmany complex tasks instead favor their integration. We consider a hierarchical architecture that exploits the computational efficiency of habitual control to select goals while preserving the flexibility of planning to achieve those goals. We formalize this mechanism in a reinforcement learning setting, illustrate its costs and benefits, and experimentally demonstrate its spontaneous application in a sequential decision-making task.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1506367112</identifier><identifier>PMID: 26460050</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algorithms ; Choice Behavior - physiology ; Decision making ; Goals ; Habits ; Human subjects ; Humans ; Learning ; Learning - physiology ; Logistic Models ; Models, Psychological ; Objectives ; Planning ; Planning Techniques ; Social Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-11, Vol.112 (45), p.13817-13822</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Nov 10, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-66b655349be207ffbaccf8347cf76605d51c2e84aeaaaf62cf19b59968ce27b23</citedby><cites>FETCH-LOGICAL-c534t-66b655349be207ffbaccf8347cf76605d51c2e84aeaaaf62cf19b59968ce27b23</cites><orcidid>0000-0002-6929-9982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/45.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26466328$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26466328$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26460050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cushman, Fiery</creatorcontrib><creatorcontrib>Morris, Adam</creatorcontrib><title>Habitual control of goal selection in humans</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral control, yetmany complex tasks instead favor their integration. We consider a hierarchical architecture that exploits the computational efficiency of habitual control to select goals while preserving the flexibility of planning to achieve those goals. We formalize this mechanism in a reinforcement learning setting, illustrate its costs and benefits, and experimentally demonstrate its spontaneous application in a sequential decision-making task.</description><subject>Algorithms</subject><subject>Choice Behavior - physiology</subject><subject>Decision making</subject><subject>Goals</subject><subject>Habits</subject><subject>Human subjects</subject><subject>Humans</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Logistic Models</subject><subject>Models, Psychological</subject><subject>Objectives</subject><subject>Planning</subject><subject>Planning Techniques</subject><subject>Social Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLAzEQxoMoWqtnT8qCFw9uO3nvXgQRX1DwoueQTRPdst3UZFfwvzdLa31cMgnzmy8z8yF0gmGCQdLpqtVxgjkIKiTGZAeNMJQ4F6yEXTQCIDIvGGEH6DDGBQCUvIB9dEAEEwAcRujyQVd11-smM77tgm8y77JXn97RNtZ0tW-zus3e-qVu4xHac7qJ9ngTx-jl7vb55iGfPd0_3lzPcsMp63IhKsHTrawsAelcpY1xBWXSOCkE8DnHhtiCaau1doIYh8uKl6UojCWyInSMrta6q75a2rmxqTPdqFWolzp8Kq9r9TfT1m_q1X8oJjglBCeBi41A8O-9jZ1a1tHYptGt9X1UWFIiAKf9JPT8H7rwfWjTeAPFJC2HY4yma8oEH2OwbtsMBjU4oQYn1I8TqeLs9wxb_nv1Ccg2wFC5lcNEMa4wLfDw6-kaWcTOhz8SgpKCfgEatJf3</recordid><startdate>20151110</startdate><enddate>20151110</enddate><creator>Cushman, Fiery</creator><creator>Morris, Adam</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6929-9982</orcidid></search><sort><creationdate>20151110</creationdate><title>Habitual control of goal selection in humans</title><author>Cushman, Fiery ; Morris, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-66b655349be207ffbaccf8347cf76605d51c2e84aeaaaf62cf19b59968ce27b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Choice Behavior - physiology</topic><topic>Decision making</topic><topic>Goals</topic><topic>Habits</topic><topic>Human subjects</topic><topic>Humans</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Logistic Models</topic><topic>Models, Psychological</topic><topic>Objectives</topic><topic>Planning</topic><topic>Planning Techniques</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cushman, Fiery</creatorcontrib><creatorcontrib>Morris, Adam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cushman, Fiery</au><au>Morris, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Habitual control of goal selection in humans</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-11-10</date><risdate>2015</risdate><volume>112</volume><issue>45</issue><spage>13817</spage><epage>13822</epage><pages>13817-13822</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral control, yetmany complex tasks instead favor their integration. We consider a hierarchical architecture that exploits the computational efficiency of habitual control to select goals while preserving the flexibility of planning to achieve those goals. We formalize this mechanism in a reinforcement learning setting, illustrate its costs and benefits, and experimentally demonstrate its spontaneous application in a sequential decision-making task.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26460050</pmid><doi>10.1073/pnas.1506367112</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6929-9982</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-11, Vol.112 (45), p.13817-13822
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1506367112
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Choice Behavior - physiology
Decision making
Goals
Habits
Human subjects
Humans
Learning
Learning - physiology
Logistic Models
Models, Psychological
Objectives
Planning
Planning Techniques
Social Sciences
title Habitual control of goal selection in humans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Habitual%20control%20of%20goal%20selection%20in%20humans&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cushman,%20Fiery&rft.date=2015-11-10&rft.volume=112&rft.issue=45&rft.spage=13817&rft.epage=13822&rft.pages=13817-13822&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1506367112&rft_dat=%3Cjstor_cross%3E26466328%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1734739347&rft_id=info:pmid/26460050&rft_jstor_id=26466328&rfr_iscdi=true