Habitual control of goal selection in humans
Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral contro...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-11, Vol.112 (45), p.13817-13822 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13822 |
---|---|
container_issue | 45 |
container_start_page | 13817 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Cushman, Fiery Morris, Adam |
description | Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral control, yetmany complex tasks instead favor their integration. We consider a hierarchical architecture that exploits the computational efficiency of habitual control to select goals while preserving the flexibility of planning to achieve those goals. We formalize this mechanism in a reinforcement learning setting, illustrate its costs and benefits, and experimentally demonstrate its spontaneous application in a sequential decision-making task. |
doi_str_mv | 10.1073/pnas.1506367112 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1506367112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26466328</jstor_id><sourcerecordid>26466328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-66b655349be207ffbaccf8347cf76605d51c2e84aeaaaf62cf19b59968ce27b23</originalsourceid><addsrcrecordid>eNpdkctLAzEQxoMoWqtnT8qCFw9uO3nvXgQRX1DwoueQTRPdst3UZFfwvzdLa31cMgnzmy8z8yF0gmGCQdLpqtVxgjkIKiTGZAeNMJQ4F6yEXTQCIDIvGGEH6DDGBQCUvIB9dEAEEwAcRujyQVd11-smM77tgm8y77JXn97RNtZ0tW-zus3e-qVu4xHac7qJ9ngTx-jl7vb55iGfPd0_3lzPcsMp63IhKsHTrawsAelcpY1xBWXSOCkE8DnHhtiCaau1doIYh8uKl6UojCWyInSMrta6q75a2rmxqTPdqFWolzp8Kq9r9TfT1m_q1X8oJjglBCeBi41A8O-9jZ1a1tHYptGt9X1UWFIiAKf9JPT8H7rwfWjTeAPFJC2HY4yma8oEH2OwbtsMBjU4oQYn1I8TqeLs9wxb_nv1Ccg2wFC5lcNEMa4wLfDw6-kaWcTOhz8SgpKCfgEatJf3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734739347</pqid></control><display><type>article</type><title>Habitual control of goal selection in humans</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cushman, Fiery ; Morris, Adam</creator><creatorcontrib>Cushman, Fiery ; Morris, Adam</creatorcontrib><description>Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral control, yetmany complex tasks instead favor their integration. We consider a hierarchical architecture that exploits the computational efficiency of habitual control to select goals while preserving the flexibility of planning to achieve those goals. We formalize this mechanism in a reinforcement learning setting, illustrate its costs and benefits, and experimentally demonstrate its spontaneous application in a sequential decision-making task.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1506367112</identifier><identifier>PMID: 26460050</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algorithms ; Choice Behavior - physiology ; Decision making ; Goals ; Habits ; Human subjects ; Humans ; Learning ; Learning - physiology ; Logistic Models ; Models, Psychological ; Objectives ; Planning ; Planning Techniques ; Social Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-11, Vol.112 (45), p.13817-13822</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Nov 10, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-66b655349be207ffbaccf8347cf76605d51c2e84aeaaaf62cf19b59968ce27b23</citedby><cites>FETCH-LOGICAL-c534t-66b655349be207ffbaccf8347cf76605d51c2e84aeaaaf62cf19b59968ce27b23</cites><orcidid>0000-0002-6929-9982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/45.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26466328$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26466328$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26460050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cushman, Fiery</creatorcontrib><creatorcontrib>Morris, Adam</creatorcontrib><title>Habitual control of goal selection in humans</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral control, yetmany complex tasks instead favor their integration. We consider a hierarchical architecture that exploits the computational efficiency of habitual control to select goals while preserving the flexibility of planning to achieve those goals. We formalize this mechanism in a reinforcement learning setting, illustrate its costs and benefits, and experimentally demonstrate its spontaneous application in a sequential decision-making task.</description><subject>Algorithms</subject><subject>Choice Behavior - physiology</subject><subject>Decision making</subject><subject>Goals</subject><subject>Habits</subject><subject>Human subjects</subject><subject>Humans</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Logistic Models</subject><subject>Models, Psychological</subject><subject>Objectives</subject><subject>Planning</subject><subject>Planning Techniques</subject><subject>Social Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLAzEQxoMoWqtnT8qCFw9uO3nvXgQRX1DwoueQTRPdst3UZFfwvzdLa31cMgnzmy8z8yF0gmGCQdLpqtVxgjkIKiTGZAeNMJQ4F6yEXTQCIDIvGGEH6DDGBQCUvIB9dEAEEwAcRujyQVd11-smM77tgm8y77JXn97RNtZ0tW-zus3e-qVu4xHac7qJ9ngTx-jl7vb55iGfPd0_3lzPcsMp63IhKsHTrawsAelcpY1xBWXSOCkE8DnHhtiCaau1doIYh8uKl6UojCWyInSMrta6q75a2rmxqTPdqFWolzp8Kq9r9TfT1m_q1X8oJjglBCeBi41A8O-9jZ1a1tHYptGt9X1UWFIiAKf9JPT8H7rwfWjTeAPFJC2HY4yma8oEH2OwbtsMBjU4oQYn1I8TqeLs9wxb_nv1Ccg2wFC5lcNEMa4wLfDw6-kaWcTOhz8SgpKCfgEatJf3</recordid><startdate>20151110</startdate><enddate>20151110</enddate><creator>Cushman, Fiery</creator><creator>Morris, Adam</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6929-9982</orcidid></search><sort><creationdate>20151110</creationdate><title>Habitual control of goal selection in humans</title><author>Cushman, Fiery ; Morris, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-66b655349be207ffbaccf8347cf76605d51c2e84aeaaaf62cf19b59968ce27b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Choice Behavior - physiology</topic><topic>Decision making</topic><topic>Goals</topic><topic>Habits</topic><topic>Human subjects</topic><topic>Humans</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Logistic Models</topic><topic>Models, Psychological</topic><topic>Objectives</topic><topic>Planning</topic><topic>Planning Techniques</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cushman, Fiery</creatorcontrib><creatorcontrib>Morris, Adam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cushman, Fiery</au><au>Morris, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Habitual control of goal selection in humans</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-11-10</date><risdate>2015</risdate><volume>112</volume><issue>45</issue><spage>13817</spage><epage>13822</epage><pages>13817-13822</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral control, yetmany complex tasks instead favor their integration. We consider a hierarchical architecture that exploits the computational efficiency of habitual control to select goals while preserving the flexibility of planning to achieve those goals. We formalize this mechanism in a reinforcement learning setting, illustrate its costs and benefits, and experimentally demonstrate its spontaneous application in a sequential decision-making task.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26460050</pmid><doi>10.1073/pnas.1506367112</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6929-9982</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-11, Vol.112 (45), p.13817-13822 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1506367112 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Choice Behavior - physiology Decision making Goals Habits Human subjects Humans Learning Learning - physiology Logistic Models Models, Psychological Objectives Planning Planning Techniques Social Sciences |
title | Habitual control of goal selection in humans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Habitual%20control%20of%20goal%20selection%20in%20humans&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cushman,%20Fiery&rft.date=2015-11-10&rft.volume=112&rft.issue=45&rft.spage=13817&rft.epage=13822&rft.pages=13817-13822&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1506367112&rft_dat=%3Cjstor_cross%3E26466328%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1734739347&rft_id=info:pmid/26460050&rft_jstor_id=26466328&rfr_iscdi=true |