A Peptide Derived from the Non-Receptor-Binding Region of Urokinase Plasminogen Activator Inhibits Glioblastoma Growth and Angiogenesis in vivo in Combination with Cisplatin

The urokinase plasminogen activator system is involved in angiogenesis and tumor growth of malignant gliomas, which are highly neovascularized and so may be amenable to antiangiogenic therapy. In this paper, we describe the activity of angstrom 6, an octamer capped peptide derived from the non-recep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2000-07, Vol.97 (15), p.8484-8489
Hauptverfasser: Mishima, Kazuhiko, Mazar, Andrew P., Gown, Allen, Skelly, Marilyn, Ji, Xiang-Dong, Wang, Xu-Dong, Jones, Terence R., Cavenee, Webster K., H.-J. Su Huang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8489
container_issue 15
container_start_page 8484
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 97
creator Mishima, Kazuhiko
Mazar, Andrew P.
Gown, Allen
Skelly, Marilyn
Ji, Xiang-Dong
Wang, Xu-Dong
Jones, Terence R.
Cavenee, Webster K.
H.-J. Su Huang
description The urokinase plasminogen activator system is involved in angiogenesis and tumor growth of malignant gliomas, which are highly neovascularized and so may be amenable to antiangiogenic therapy. In this paper, we describe the activity of angstrom 6, an octamer capped peptide derived from the non-receptor-binding region of urokinase plasminogen activator. angstrom 6 inhibited human microvascular endothelial cell migration but had no effect on the proliferation of human microvascular endothelial cells or U87MG glioma cells in vitro. In contrast, angstrom 6 or cisplatin (CDDP) alone suppressed subcutaneous tumor growth in vivo by 48% and 53%, respectively, and, more strikingly, the combination of angstrom 6 plus CDDP inhibited tumor growth by 92%. Such combination treatment also greatly reduced the volume of intracranial tumor xenografts and increased survival of tumor-bearing animals when compared with CDDP or angstrom 6 alone. Tumors from the combination treatment group had significantly reduced neovascularization, suggesting a mechanism involving angstrom 6-mediated inhibition of endothelial cell motility, thereby eliciting vascular sensitivity to CDDP-mediated toxicity. These data suggest that the combination of an angiogenesis inhibitor that targets endothelial cells with a cytotoxic agent may be a useful therapeutic approach.
doi_str_mv 10.1073/pnas.150239497
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_150239497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>122927</jstor_id><sourcerecordid>122927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-396ea685ada21505c774d0a4cd29730a92b12ad2f2c56500b3cafd17ee2304053</originalsourceid><addsrcrecordid>eNptkc2O0zAUhSMEYsrAlg0SstiwSrn-SRxLbEqBMtIIRiNmbTmJ07okdrHdzMxD8Y44ahmKxOrKut8558ony15imGPg9N3OqjDHBRAqmOCPshkGgfOSCXiczQAIzytG2Fn2LIQtAIiigqfZGYZKJI7Psl8LdKV30bQafdTejLpFnXcDihuNvjqbX-smrZ3PPxjbGrtG13ptnEWuQzfe_TApXqOrXoXBWLfWFi2aaEaVFOjCbkxtYkCr3rg6IdENCq28u40bpGyLFjZZJY0OJiBj0WhGN82lG-pkHKecW5PgpQm7Pr3t8-xJp_qgXxzneXbz-dP35Zf88tvqYrm4zBtWlTGnotSqrArVKpL-pmg4Zy0o1rREcApKkBoT1ZKONEVZANS0UV2LudaEAoOCnmfvD767fT3ottE2etXLnTeD8vfSKSP_3VizkWs3SlIKzpL8zVHu3c-9DlFu3d7bdLEkgCllFUCC5geo8S4Er7sHewxy6lZO3cqHbpPg9elRJ_ihzAS8PQKT8M9a8OQhK1Yx2e37Puq7eGL1fzIBrw7ANrXm_0YRIginvwHL2MVD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201334800</pqid></control><display><type>article</type><title>A Peptide Derived from the Non-Receptor-Binding Region of Urokinase Plasminogen Activator Inhibits Glioblastoma Growth and Angiogenesis in vivo in Combination with Cisplatin</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mishima, Kazuhiko ; Mazar, Andrew P. ; Gown, Allen ; Skelly, Marilyn ; Ji, Xiang-Dong ; Wang, Xu-Dong ; Jones, Terence R. ; Cavenee, Webster K. ; H.-J. Su Huang</creator><creatorcontrib>Mishima, Kazuhiko ; Mazar, Andrew P. ; Gown, Allen ; Skelly, Marilyn ; Ji, Xiang-Dong ; Wang, Xu-Dong ; Jones, Terence R. ; Cavenee, Webster K. ; H.-J. Su Huang</creatorcontrib><description>The urokinase plasminogen activator system is involved in angiogenesis and tumor growth of malignant gliomas, which are highly neovascularized and so may be amenable to antiangiogenic therapy. In this paper, we describe the activity of angstrom 6, an octamer capped peptide derived from the non-receptor-binding region of urokinase plasminogen activator. angstrom 6 inhibited human microvascular endothelial cell migration but had no effect on the proliferation of human microvascular endothelial cells or U87MG glioma cells in vitro. In contrast, angstrom 6 or cisplatin (CDDP) alone suppressed subcutaneous tumor growth in vivo by 48% and 53%, respectively, and, more strikingly, the combination of angstrom 6 plus CDDP inhibited tumor growth by 92%. Such combination treatment also greatly reduced the volume of intracranial tumor xenografts and increased survival of tumor-bearing animals when compared with CDDP or angstrom 6 alone. Tumors from the combination treatment group had significantly reduced neovascularization, suggesting a mechanism involving angstrom 6-mediated inhibition of endothelial cell motility, thereby eliciting vascular sensitivity to CDDP-mediated toxicity. These data suggest that the combination of an angiogenesis inhibitor that targets endothelial cells with a cytotoxic agent may be a useful therapeutic approach.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.150239497</identifier><identifier>PMID: 10890917</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Angiogenesis ; Animal migration behavior ; Animals ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Biological Sciences ; Brain - blood supply ; Brain - pathology ; Brain Neoplasms - drug therapy ; Brain Neoplasms - physiopathology ; Cell Division - drug effects ; Cell growth ; Cell lines ; Cell Movement - drug effects ; Cells ; Cells, Cultured ; Cisplatin - pharmacology ; Cisplatin - therapeutic use ; Dosage ; Drug therapy ; Drug Therapy, Combination ; Endothelial cells ; Endothelium, Vascular - cytology ; Female ; Glioblastoma - drug therapy ; Glioblastoma - physiopathology ; Humans ; Mice ; Mice, Inbred BALB C ; Microvessels ; Neovascularization, Pathologic ; Peptides ; Peptides - chemical synthesis ; Peptides - pharmacology ; Peptides - therapeutic use ; Receptors, Cell Surface - metabolism ; Receptors, Urokinase Plasminogen Activator ; Tumor burden ; Tumor cell line ; Tumor Cells, Cultured ; Tumors ; Urokinase-Type Plasminogen Activator - chemical synthesis ; Urokinase-Type Plasminogen Activator - metabolism ; Urokinase-Type Plasminogen Activator - therapeutic use</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-07, Vol.97 (15), p.8484-8489</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 18, 2000</rights><rights>Copyright © The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-396ea685ada21505c774d0a4cd29730a92b12ad2f2c56500b3cafd17ee2304053</citedby><cites>FETCH-LOGICAL-c486t-396ea685ada21505c774d0a4cd29730a92b12ad2f2c56500b3cafd17ee2304053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/15.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/122927$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/122927$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10890917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mishima, Kazuhiko</creatorcontrib><creatorcontrib>Mazar, Andrew P.</creatorcontrib><creatorcontrib>Gown, Allen</creatorcontrib><creatorcontrib>Skelly, Marilyn</creatorcontrib><creatorcontrib>Ji, Xiang-Dong</creatorcontrib><creatorcontrib>Wang, Xu-Dong</creatorcontrib><creatorcontrib>Jones, Terence R.</creatorcontrib><creatorcontrib>Cavenee, Webster K.</creatorcontrib><creatorcontrib>H.-J. Su Huang</creatorcontrib><title>A Peptide Derived from the Non-Receptor-Binding Region of Urokinase Plasminogen Activator Inhibits Glioblastoma Growth and Angiogenesis in vivo in Combination with Cisplatin</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The urokinase plasminogen activator system is involved in angiogenesis and tumor growth of malignant gliomas, which are highly neovascularized and so may be amenable to antiangiogenic therapy. In this paper, we describe the activity of angstrom 6, an octamer capped peptide derived from the non-receptor-binding region of urokinase plasminogen activator. angstrom 6 inhibited human microvascular endothelial cell migration but had no effect on the proliferation of human microvascular endothelial cells or U87MG glioma cells in vitro. In contrast, angstrom 6 or cisplatin (CDDP) alone suppressed subcutaneous tumor growth in vivo by 48% and 53%, respectively, and, more strikingly, the combination of angstrom 6 plus CDDP inhibited tumor growth by 92%. Such combination treatment also greatly reduced the volume of intracranial tumor xenografts and increased survival of tumor-bearing animals when compared with CDDP or angstrom 6 alone. Tumors from the combination treatment group had significantly reduced neovascularization, suggesting a mechanism involving angstrom 6-mediated inhibition of endothelial cell motility, thereby eliciting vascular sensitivity to CDDP-mediated toxicity. These data suggest that the combination of an angiogenesis inhibitor that targets endothelial cells with a cytotoxic agent may be a useful therapeutic approach.</description><subject>Angiogenesis</subject><subject>Animal migration behavior</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Biological Sciences</subject><subject>Brain - blood supply</subject><subject>Brain - pathology</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - physiopathology</subject><subject>Cell Division - drug effects</subject><subject>Cell growth</subject><subject>Cell lines</subject><subject>Cell Movement - drug effects</subject><subject>Cells</subject><subject>Cells, Cultured</subject><subject>Cisplatin - pharmacology</subject><subject>Cisplatin - therapeutic use</subject><subject>Dosage</subject><subject>Drug therapy</subject><subject>Drug Therapy, Combination</subject><subject>Endothelial cells</subject><subject>Endothelium, Vascular - cytology</subject><subject>Female</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - physiopathology</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Microvessels</subject><subject>Neovascularization, Pathologic</subject><subject>Peptides</subject><subject>Peptides - chemical synthesis</subject><subject>Peptides - pharmacology</subject><subject>Peptides - therapeutic use</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Receptors, Urokinase Plasminogen Activator</subject><subject>Tumor burden</subject><subject>Tumor cell line</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><subject>Urokinase-Type Plasminogen Activator - chemical synthesis</subject><subject>Urokinase-Type Plasminogen Activator - metabolism</subject><subject>Urokinase-Type Plasminogen Activator - therapeutic use</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc2O0zAUhSMEYsrAlg0SstiwSrn-SRxLbEqBMtIIRiNmbTmJ07okdrHdzMxD8Y44ahmKxOrKut8558ony15imGPg9N3OqjDHBRAqmOCPshkGgfOSCXiczQAIzytG2Fn2LIQtAIiigqfZGYZKJI7Psl8LdKV30bQafdTejLpFnXcDihuNvjqbX-smrZ3PPxjbGrtG13ptnEWuQzfe_TApXqOrXoXBWLfWFi2aaEaVFOjCbkxtYkCr3rg6IdENCq28u40bpGyLFjZZJY0OJiBj0WhGN82lG-pkHKecW5PgpQm7Pr3t8-xJp_qgXxzneXbz-dP35Zf88tvqYrm4zBtWlTGnotSqrArVKpL-pmg4Zy0o1rREcApKkBoT1ZKONEVZANS0UV2LudaEAoOCnmfvD767fT3ottE2etXLnTeD8vfSKSP_3VizkWs3SlIKzpL8zVHu3c-9DlFu3d7bdLEkgCllFUCC5geo8S4Er7sHewxy6lZO3cqHbpPg9elRJ_ihzAS8PQKT8M9a8OQhK1Yx2e37Puq7eGL1fzIBrw7ANrXm_0YRIginvwHL2MVD</recordid><startdate>20000718</startdate><enddate>20000718</enddate><creator>Mishima, Kazuhiko</creator><creator>Mazar, Andrew P.</creator><creator>Gown, Allen</creator><creator>Skelly, Marilyn</creator><creator>Ji, Xiang-Dong</creator><creator>Wang, Xu-Dong</creator><creator>Jones, Terence R.</creator><creator>Cavenee, Webster K.</creator><creator>H.-J. Su Huang</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20000718</creationdate><title>A Peptide Derived from the Non-Receptor-Binding Region of Urokinase Plasminogen Activator Inhibits Glioblastoma Growth and Angiogenesis in vivo in Combination with Cisplatin</title><author>Mishima, Kazuhiko ; Mazar, Andrew P. ; Gown, Allen ; Skelly, Marilyn ; Ji, Xiang-Dong ; Wang, Xu-Dong ; Jones, Terence R. ; Cavenee, Webster K. ; H.-J. Su Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-396ea685ada21505c774d0a4cd29730a92b12ad2f2c56500b3cafd17ee2304053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Angiogenesis</topic><topic>Animal migration behavior</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Biological Sciences</topic><topic>Brain - blood supply</topic><topic>Brain - pathology</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - physiopathology</topic><topic>Cell Division - drug effects</topic><topic>Cell growth</topic><topic>Cell lines</topic><topic>Cell Movement - drug effects</topic><topic>Cells</topic><topic>Cells, Cultured</topic><topic>Cisplatin - pharmacology</topic><topic>Cisplatin - therapeutic use</topic><topic>Dosage</topic><topic>Drug therapy</topic><topic>Drug Therapy, Combination</topic><topic>Endothelial cells</topic><topic>Endothelium, Vascular - cytology</topic><topic>Female</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - physiopathology</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Microvessels</topic><topic>Neovascularization, Pathologic</topic><topic>Peptides</topic><topic>Peptides - chemical synthesis</topic><topic>Peptides - pharmacology</topic><topic>Peptides - therapeutic use</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Receptors, Urokinase Plasminogen Activator</topic><topic>Tumor burden</topic><topic>Tumor cell line</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><topic>Urokinase-Type Plasminogen Activator - chemical synthesis</topic><topic>Urokinase-Type Plasminogen Activator - metabolism</topic><topic>Urokinase-Type Plasminogen Activator - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishima, Kazuhiko</creatorcontrib><creatorcontrib>Mazar, Andrew P.</creatorcontrib><creatorcontrib>Gown, Allen</creatorcontrib><creatorcontrib>Skelly, Marilyn</creatorcontrib><creatorcontrib>Ji, Xiang-Dong</creatorcontrib><creatorcontrib>Wang, Xu-Dong</creatorcontrib><creatorcontrib>Jones, Terence R.</creatorcontrib><creatorcontrib>Cavenee, Webster K.</creatorcontrib><creatorcontrib>H.-J. Su Huang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishima, Kazuhiko</au><au>Mazar, Andrew P.</au><au>Gown, Allen</au><au>Skelly, Marilyn</au><au>Ji, Xiang-Dong</au><au>Wang, Xu-Dong</au><au>Jones, Terence R.</au><au>Cavenee, Webster K.</au><au>H.-J. Su Huang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Peptide Derived from the Non-Receptor-Binding Region of Urokinase Plasminogen Activator Inhibits Glioblastoma Growth and Angiogenesis in vivo in Combination with Cisplatin</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-07-18</date><risdate>2000</risdate><volume>97</volume><issue>15</issue><spage>8484</spage><epage>8489</epage><pages>8484-8489</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The urokinase plasminogen activator system is involved in angiogenesis and tumor growth of malignant gliomas, which are highly neovascularized and so may be amenable to antiangiogenic therapy. In this paper, we describe the activity of angstrom 6, an octamer capped peptide derived from the non-receptor-binding region of urokinase plasminogen activator. angstrom 6 inhibited human microvascular endothelial cell migration but had no effect on the proliferation of human microvascular endothelial cells or U87MG glioma cells in vitro. In contrast, angstrom 6 or cisplatin (CDDP) alone suppressed subcutaneous tumor growth in vivo by 48% and 53%, respectively, and, more strikingly, the combination of angstrom 6 plus CDDP inhibited tumor growth by 92%. Such combination treatment also greatly reduced the volume of intracranial tumor xenografts and increased survival of tumor-bearing animals when compared with CDDP or angstrom 6 alone. Tumors from the combination treatment group had significantly reduced neovascularization, suggesting a mechanism involving angstrom 6-mediated inhibition of endothelial cell motility, thereby eliciting vascular sensitivity to CDDP-mediated toxicity. These data suggest that the combination of an angiogenesis inhibitor that targets endothelial cells with a cytotoxic agent may be a useful therapeutic approach.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10890917</pmid><doi>10.1073/pnas.150239497</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2000-07, Vol.97 (15), p.8484-8489
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_150239497
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Angiogenesis
Animal migration behavior
Animals
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Biological Sciences
Brain - blood supply
Brain - pathology
Brain Neoplasms - drug therapy
Brain Neoplasms - physiopathology
Cell Division - drug effects
Cell growth
Cell lines
Cell Movement - drug effects
Cells
Cells, Cultured
Cisplatin - pharmacology
Cisplatin - therapeutic use
Dosage
Drug therapy
Drug Therapy, Combination
Endothelial cells
Endothelium, Vascular - cytology
Female
Glioblastoma - drug therapy
Glioblastoma - physiopathology
Humans
Mice
Mice, Inbred BALB C
Microvessels
Neovascularization, Pathologic
Peptides
Peptides - chemical synthesis
Peptides - pharmacology
Peptides - therapeutic use
Receptors, Cell Surface - metabolism
Receptors, Urokinase Plasminogen Activator
Tumor burden
Tumor cell line
Tumor Cells, Cultured
Tumors
Urokinase-Type Plasminogen Activator - chemical synthesis
Urokinase-Type Plasminogen Activator - metabolism
Urokinase-Type Plasminogen Activator - therapeutic use
title A Peptide Derived from the Non-Receptor-Binding Region of Urokinase Plasminogen Activator Inhibits Glioblastoma Growth and Angiogenesis in vivo in Combination with Cisplatin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Peptide%20Derived%20from%20the%20Non-Receptor-Binding%20Region%20of%20Urokinase%20Plasminogen%20Activator%20Inhibits%20Glioblastoma%20Growth%20and%20Angiogenesis%20in%20vivo%20in%20Combination%20with%20Cisplatin&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mishima,%20Kazuhiko&rft.date=2000-07-18&rft.volume=97&rft.issue=15&rft.spage=8484&rft.epage=8489&rft.pages=8484-8489&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.150239497&rft_dat=%3Cjstor_cross%3E122927%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201334800&rft_id=info:pmid/10890917&rft_jstor_id=122927&rfr_iscdi=true