A Peptide Derived from the Non-Receptor-Binding Region of Urokinase Plasminogen Activator Inhibits Glioblastoma Growth and Angiogenesis in vivo in Combination with Cisplatin
The urokinase plasminogen activator system is involved in angiogenesis and tumor growth of malignant gliomas, which are highly neovascularized and so may be amenable to antiangiogenic therapy. In this paper, we describe the activity of angstrom 6, an octamer capped peptide derived from the non-recep...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2000-07, Vol.97 (15), p.8484-8489 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8489 |
---|---|
container_issue | 15 |
container_start_page | 8484 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 97 |
creator | Mishima, Kazuhiko Mazar, Andrew P. Gown, Allen Skelly, Marilyn Ji, Xiang-Dong Wang, Xu-Dong Jones, Terence R. Cavenee, Webster K. H.-J. Su Huang |
description | The urokinase plasminogen activator system is involved in angiogenesis and tumor growth of malignant gliomas, which are highly neovascularized and so may be amenable to antiangiogenic therapy. In this paper, we describe the activity of angstrom 6, an octamer capped peptide derived from the non-receptor-binding region of urokinase plasminogen activator. angstrom 6 inhibited human microvascular endothelial cell migration but had no effect on the proliferation of human microvascular endothelial cells or U87MG glioma cells in vitro. In contrast, angstrom 6 or cisplatin (CDDP) alone suppressed subcutaneous tumor growth in vivo by 48% and 53%, respectively, and, more strikingly, the combination of angstrom 6 plus CDDP inhibited tumor growth by 92%. Such combination treatment also greatly reduced the volume of intracranial tumor xenografts and increased survival of tumor-bearing animals when compared with CDDP or angstrom 6 alone. Tumors from the combination treatment group had significantly reduced neovascularization, suggesting a mechanism involving angstrom 6-mediated inhibition of endothelial cell motility, thereby eliciting vascular sensitivity to CDDP-mediated toxicity. These data suggest that the combination of an angiogenesis inhibitor that targets endothelial cells with a cytotoxic agent may be a useful therapeutic approach. |
doi_str_mv | 10.1073/pnas.150239497 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_150239497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>122927</jstor_id><sourcerecordid>122927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-396ea685ada21505c774d0a4cd29730a92b12ad2f2c56500b3cafd17ee2304053</originalsourceid><addsrcrecordid>eNptkc2O0zAUhSMEYsrAlg0SstiwSrn-SRxLbEqBMtIIRiNmbTmJ07okdrHdzMxD8Y44ahmKxOrKut8558ony15imGPg9N3OqjDHBRAqmOCPshkGgfOSCXiczQAIzytG2Fn2LIQtAIiigqfZGYZKJI7Psl8LdKV30bQafdTejLpFnXcDihuNvjqbX-smrZ3PPxjbGrtG13ptnEWuQzfe_TApXqOrXoXBWLfWFi2aaEaVFOjCbkxtYkCr3rg6IdENCq28u40bpGyLFjZZJY0OJiBj0WhGN82lG-pkHKecW5PgpQm7Pr3t8-xJp_qgXxzneXbz-dP35Zf88tvqYrm4zBtWlTGnotSqrArVKpL-pmg4Zy0o1rREcApKkBoT1ZKONEVZANS0UV2LudaEAoOCnmfvD767fT3ottE2etXLnTeD8vfSKSP_3VizkWs3SlIKzpL8zVHu3c-9DlFu3d7bdLEkgCllFUCC5geo8S4Er7sHewxy6lZO3cqHbpPg9elRJ_ihzAS8PQKT8M9a8OQhK1Yx2e37Puq7eGL1fzIBrw7ANrXm_0YRIginvwHL2MVD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201334800</pqid></control><display><type>article</type><title>A Peptide Derived from the Non-Receptor-Binding Region of Urokinase Plasminogen Activator Inhibits Glioblastoma Growth and Angiogenesis in vivo in Combination with Cisplatin</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mishima, Kazuhiko ; Mazar, Andrew P. ; Gown, Allen ; Skelly, Marilyn ; Ji, Xiang-Dong ; Wang, Xu-Dong ; Jones, Terence R. ; Cavenee, Webster K. ; H.-J. Su Huang</creator><creatorcontrib>Mishima, Kazuhiko ; Mazar, Andrew P. ; Gown, Allen ; Skelly, Marilyn ; Ji, Xiang-Dong ; Wang, Xu-Dong ; Jones, Terence R. ; Cavenee, Webster K. ; H.-J. Su Huang</creatorcontrib><description>The urokinase plasminogen activator system is involved in angiogenesis and tumor growth of malignant gliomas, which are highly neovascularized and so may be amenable to antiangiogenic therapy. In this paper, we describe the activity of angstrom 6, an octamer capped peptide derived from the non-receptor-binding region of urokinase plasminogen activator. angstrom 6 inhibited human microvascular endothelial cell migration but had no effect on the proliferation of human microvascular endothelial cells or U87MG glioma cells in vitro. In contrast, angstrom 6 or cisplatin (CDDP) alone suppressed subcutaneous tumor growth in vivo by 48% and 53%, respectively, and, more strikingly, the combination of angstrom 6 plus CDDP inhibited tumor growth by 92%. Such combination treatment also greatly reduced the volume of intracranial tumor xenografts and increased survival of tumor-bearing animals when compared with CDDP or angstrom 6 alone. Tumors from the combination treatment group had significantly reduced neovascularization, suggesting a mechanism involving angstrom 6-mediated inhibition of endothelial cell motility, thereby eliciting vascular sensitivity to CDDP-mediated toxicity. These data suggest that the combination of an angiogenesis inhibitor that targets endothelial cells with a cytotoxic agent may be a useful therapeutic approach.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.150239497</identifier><identifier>PMID: 10890917</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Angiogenesis ; Animal migration behavior ; Animals ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Biological Sciences ; Brain - blood supply ; Brain - pathology ; Brain Neoplasms - drug therapy ; Brain Neoplasms - physiopathology ; Cell Division - drug effects ; Cell growth ; Cell lines ; Cell Movement - drug effects ; Cells ; Cells, Cultured ; Cisplatin - pharmacology ; Cisplatin - therapeutic use ; Dosage ; Drug therapy ; Drug Therapy, Combination ; Endothelial cells ; Endothelium, Vascular - cytology ; Female ; Glioblastoma - drug therapy ; Glioblastoma - physiopathology ; Humans ; Mice ; Mice, Inbred BALB C ; Microvessels ; Neovascularization, Pathologic ; Peptides ; Peptides - chemical synthesis ; Peptides - pharmacology ; Peptides - therapeutic use ; Receptors, Cell Surface - metabolism ; Receptors, Urokinase Plasminogen Activator ; Tumor burden ; Tumor cell line ; Tumor Cells, Cultured ; Tumors ; Urokinase-Type Plasminogen Activator - chemical synthesis ; Urokinase-Type Plasminogen Activator - metabolism ; Urokinase-Type Plasminogen Activator - therapeutic use</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-07, Vol.97 (15), p.8484-8489</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 18, 2000</rights><rights>Copyright © The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-396ea685ada21505c774d0a4cd29730a92b12ad2f2c56500b3cafd17ee2304053</citedby><cites>FETCH-LOGICAL-c486t-396ea685ada21505c774d0a4cd29730a92b12ad2f2c56500b3cafd17ee2304053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/15.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/122927$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/122927$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10890917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mishima, Kazuhiko</creatorcontrib><creatorcontrib>Mazar, Andrew P.</creatorcontrib><creatorcontrib>Gown, Allen</creatorcontrib><creatorcontrib>Skelly, Marilyn</creatorcontrib><creatorcontrib>Ji, Xiang-Dong</creatorcontrib><creatorcontrib>Wang, Xu-Dong</creatorcontrib><creatorcontrib>Jones, Terence R.</creatorcontrib><creatorcontrib>Cavenee, Webster K.</creatorcontrib><creatorcontrib>H.-J. Su Huang</creatorcontrib><title>A Peptide Derived from the Non-Receptor-Binding Region of Urokinase Plasminogen Activator Inhibits Glioblastoma Growth and Angiogenesis in vivo in Combination with Cisplatin</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The urokinase plasminogen activator system is involved in angiogenesis and tumor growth of malignant gliomas, which are highly neovascularized and so may be amenable to antiangiogenic therapy. In this paper, we describe the activity of angstrom 6, an octamer capped peptide derived from the non-receptor-binding region of urokinase plasminogen activator. angstrom 6 inhibited human microvascular endothelial cell migration but had no effect on the proliferation of human microvascular endothelial cells or U87MG glioma cells in vitro. In contrast, angstrom 6 or cisplatin (CDDP) alone suppressed subcutaneous tumor growth in vivo by 48% and 53%, respectively, and, more strikingly, the combination of angstrom 6 plus CDDP inhibited tumor growth by 92%. Such combination treatment also greatly reduced the volume of intracranial tumor xenografts and increased survival of tumor-bearing animals when compared with CDDP or angstrom 6 alone. Tumors from the combination treatment group had significantly reduced neovascularization, suggesting a mechanism involving angstrom 6-mediated inhibition of endothelial cell motility, thereby eliciting vascular sensitivity to CDDP-mediated toxicity. These data suggest that the combination of an angiogenesis inhibitor that targets endothelial cells with a cytotoxic agent may be a useful therapeutic approach.</description><subject>Angiogenesis</subject><subject>Animal migration behavior</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Biological Sciences</subject><subject>Brain - blood supply</subject><subject>Brain - pathology</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - physiopathology</subject><subject>Cell Division - drug effects</subject><subject>Cell growth</subject><subject>Cell lines</subject><subject>Cell Movement - drug effects</subject><subject>Cells</subject><subject>Cells, Cultured</subject><subject>Cisplatin - pharmacology</subject><subject>Cisplatin - therapeutic use</subject><subject>Dosage</subject><subject>Drug therapy</subject><subject>Drug Therapy, Combination</subject><subject>Endothelial cells</subject><subject>Endothelium, Vascular - cytology</subject><subject>Female</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - physiopathology</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Microvessels</subject><subject>Neovascularization, Pathologic</subject><subject>Peptides</subject><subject>Peptides - chemical synthesis</subject><subject>Peptides - pharmacology</subject><subject>Peptides - therapeutic use</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Receptors, Urokinase Plasminogen Activator</subject><subject>Tumor burden</subject><subject>Tumor cell line</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><subject>Urokinase-Type Plasminogen Activator - chemical synthesis</subject><subject>Urokinase-Type Plasminogen Activator - metabolism</subject><subject>Urokinase-Type Plasminogen Activator - therapeutic use</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc2O0zAUhSMEYsrAlg0SstiwSrn-SRxLbEqBMtIIRiNmbTmJ07okdrHdzMxD8Y44ahmKxOrKut8558ony15imGPg9N3OqjDHBRAqmOCPshkGgfOSCXiczQAIzytG2Fn2LIQtAIiigqfZGYZKJI7Psl8LdKV30bQafdTejLpFnXcDihuNvjqbX-smrZ3PPxjbGrtG13ptnEWuQzfe_TApXqOrXoXBWLfWFi2aaEaVFOjCbkxtYkCr3rg6IdENCq28u40bpGyLFjZZJY0OJiBj0WhGN82lG-pkHKecW5PgpQm7Pr3t8-xJp_qgXxzneXbz-dP35Zf88tvqYrm4zBtWlTGnotSqrArVKpL-pmg4Zy0o1rREcApKkBoT1ZKONEVZANS0UV2LudaEAoOCnmfvD767fT3ottE2etXLnTeD8vfSKSP_3VizkWs3SlIKzpL8zVHu3c-9DlFu3d7bdLEkgCllFUCC5geo8S4Er7sHewxy6lZO3cqHbpPg9elRJ_ihzAS8PQKT8M9a8OQhK1Yx2e37Puq7eGL1fzIBrw7ANrXm_0YRIginvwHL2MVD</recordid><startdate>20000718</startdate><enddate>20000718</enddate><creator>Mishima, Kazuhiko</creator><creator>Mazar, Andrew P.</creator><creator>Gown, Allen</creator><creator>Skelly, Marilyn</creator><creator>Ji, Xiang-Dong</creator><creator>Wang, Xu-Dong</creator><creator>Jones, Terence R.</creator><creator>Cavenee, Webster K.</creator><creator>H.-J. Su Huang</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20000718</creationdate><title>A Peptide Derived from the Non-Receptor-Binding Region of Urokinase Plasminogen Activator Inhibits Glioblastoma Growth and Angiogenesis in vivo in Combination with Cisplatin</title><author>Mishima, Kazuhiko ; Mazar, Andrew P. ; Gown, Allen ; Skelly, Marilyn ; Ji, Xiang-Dong ; Wang, Xu-Dong ; Jones, Terence R. ; Cavenee, Webster K. ; H.-J. Su Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-396ea685ada21505c774d0a4cd29730a92b12ad2f2c56500b3cafd17ee2304053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Angiogenesis</topic><topic>Animal migration behavior</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Biological Sciences</topic><topic>Brain - blood supply</topic><topic>Brain - pathology</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - physiopathology</topic><topic>Cell Division - drug effects</topic><topic>Cell growth</topic><topic>Cell lines</topic><topic>Cell Movement - drug effects</topic><topic>Cells</topic><topic>Cells, Cultured</topic><topic>Cisplatin - pharmacology</topic><topic>Cisplatin - therapeutic use</topic><topic>Dosage</topic><topic>Drug therapy</topic><topic>Drug Therapy, Combination</topic><topic>Endothelial cells</topic><topic>Endothelium, Vascular - cytology</topic><topic>Female</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - physiopathology</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Microvessels</topic><topic>Neovascularization, Pathologic</topic><topic>Peptides</topic><topic>Peptides - chemical synthesis</topic><topic>Peptides - pharmacology</topic><topic>Peptides - therapeutic use</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Receptors, Urokinase Plasminogen Activator</topic><topic>Tumor burden</topic><topic>Tumor cell line</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><topic>Urokinase-Type Plasminogen Activator - chemical synthesis</topic><topic>Urokinase-Type Plasminogen Activator - metabolism</topic><topic>Urokinase-Type Plasminogen Activator - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishima, Kazuhiko</creatorcontrib><creatorcontrib>Mazar, Andrew P.</creatorcontrib><creatorcontrib>Gown, Allen</creatorcontrib><creatorcontrib>Skelly, Marilyn</creatorcontrib><creatorcontrib>Ji, Xiang-Dong</creatorcontrib><creatorcontrib>Wang, Xu-Dong</creatorcontrib><creatorcontrib>Jones, Terence R.</creatorcontrib><creatorcontrib>Cavenee, Webster K.</creatorcontrib><creatorcontrib>H.-J. Su Huang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishima, Kazuhiko</au><au>Mazar, Andrew P.</au><au>Gown, Allen</au><au>Skelly, Marilyn</au><au>Ji, Xiang-Dong</au><au>Wang, Xu-Dong</au><au>Jones, Terence R.</au><au>Cavenee, Webster K.</au><au>H.-J. Su Huang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Peptide Derived from the Non-Receptor-Binding Region of Urokinase Plasminogen Activator Inhibits Glioblastoma Growth and Angiogenesis in vivo in Combination with Cisplatin</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-07-18</date><risdate>2000</risdate><volume>97</volume><issue>15</issue><spage>8484</spage><epage>8489</epage><pages>8484-8489</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The urokinase plasminogen activator system is involved in angiogenesis and tumor growth of malignant gliomas, which are highly neovascularized and so may be amenable to antiangiogenic therapy. In this paper, we describe the activity of angstrom 6, an octamer capped peptide derived from the non-receptor-binding region of urokinase plasminogen activator. angstrom 6 inhibited human microvascular endothelial cell migration but had no effect on the proliferation of human microvascular endothelial cells or U87MG glioma cells in vitro. In contrast, angstrom 6 or cisplatin (CDDP) alone suppressed subcutaneous tumor growth in vivo by 48% and 53%, respectively, and, more strikingly, the combination of angstrom 6 plus CDDP inhibited tumor growth by 92%. Such combination treatment also greatly reduced the volume of intracranial tumor xenografts and increased survival of tumor-bearing animals when compared with CDDP or angstrom 6 alone. Tumors from the combination treatment group had significantly reduced neovascularization, suggesting a mechanism involving angstrom 6-mediated inhibition of endothelial cell motility, thereby eliciting vascular sensitivity to CDDP-mediated toxicity. These data suggest that the combination of an angiogenesis inhibitor that targets endothelial cells with a cytotoxic agent may be a useful therapeutic approach.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10890917</pmid><doi>10.1073/pnas.150239497</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2000-07, Vol.97 (15), p.8484-8489 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_150239497 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Angiogenesis Animal migration behavior Animals Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Biological Sciences Brain - blood supply Brain - pathology Brain Neoplasms - drug therapy Brain Neoplasms - physiopathology Cell Division - drug effects Cell growth Cell lines Cell Movement - drug effects Cells Cells, Cultured Cisplatin - pharmacology Cisplatin - therapeutic use Dosage Drug therapy Drug Therapy, Combination Endothelial cells Endothelium, Vascular - cytology Female Glioblastoma - drug therapy Glioblastoma - physiopathology Humans Mice Mice, Inbred BALB C Microvessels Neovascularization, Pathologic Peptides Peptides - chemical synthesis Peptides - pharmacology Peptides - therapeutic use Receptors, Cell Surface - metabolism Receptors, Urokinase Plasminogen Activator Tumor burden Tumor cell line Tumor Cells, Cultured Tumors Urokinase-Type Plasminogen Activator - chemical synthesis Urokinase-Type Plasminogen Activator - metabolism Urokinase-Type Plasminogen Activator - therapeutic use |
title | A Peptide Derived from the Non-Receptor-Binding Region of Urokinase Plasminogen Activator Inhibits Glioblastoma Growth and Angiogenesis in vivo in Combination with Cisplatin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Peptide%20Derived%20from%20the%20Non-Receptor-Binding%20Region%20of%20Urokinase%20Plasminogen%20Activator%20Inhibits%20Glioblastoma%20Growth%20and%20Angiogenesis%20in%20vivo%20in%20Combination%20with%20Cisplatin&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mishima,%20Kazuhiko&rft.date=2000-07-18&rft.volume=97&rft.issue=15&rft.spage=8484&rft.epage=8489&rft.pages=8484-8489&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.150239497&rft_dat=%3Cjstor_cross%3E122927%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201334800&rft_id=info:pmid/10890917&rft_jstor_id=122927&rfr_iscdi=true |