Noncontact orientation of objects in three-dimensional space using magnetic levitation

This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-09, Vol.111 (36), p.12980-12985
Hauptverfasser: Subramaniam, Anand Bala, Yang, Dian, Yu, Hai-Dong, Nemiroski, Alex, Tricard, Simon, Ellerbee, Audrey K., Soh, Siowling, Whitesides, George M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12985
container_issue 36
container_start_page 12980
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Subramaniam, Anand Bala
Yang, Dian
Yu, Hai-Dong
Nemiroski, Alex
Tricard, Simon
Ellerbee, Audrey K.
Soh, Siowling
Whitesides, George M.
description This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media.
doi_str_mv 10.1073/pnas.1408705111
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1408705111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43043267</jstor_id><sourcerecordid>43043267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-93bd8238f1ee275d3dc4c97d608572c0a37723a0cc8afd14ec7008d027f21acd3</originalsourceid><addsrcrecordid>eNqFkkGP0zAQhS0EYsvCmRMoEhc4ZHfGdmzngrRaAYtUwQW4Wq7jtK4Su8RJJf49DikF9sLJlud7b8YzQ8hzhCsEya4PwaQr5KAkVIj4gKwQaiwFr-EhWQFQWSpO-QV5ktIeAOpKwWNyQSusJDKxIt8-xWBjGI0dizh4l2-jj6GIbRE3e2fHVPhQjLvBubLxvQspR01XpIOxrpiSD9uiN9vgRm-Lzh39on9KHrWmS-7Z6bwkX9-_-3J7V64_f_h4e7MurQAcy5ptGkWZatE5KquGNZbbWjYCVCWpBcOkpMyAtcq0DXJnJYBq8rdaisY27JK8XXwP06Z3jc31D6bTh8H3Zviho_H630jwO72NR52bImrOs8GbxWB3T3Z3s9bzG1AOlWDsiJl9fUo2xO-TS6PufbKu60xwcUoaFTDkyGr4P1oJzAVIMVfw6h66j9OQe_yL4nlowGfD64WyQ0xpcO25WAQ9r4KeV0H_WYWsePl3a87879lnoDgBs_Jsh6iZ0EhrNWd9sSD7NMbhzHAGnFEh2U-omsNm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564000040</pqid></control><display><type>article</type><title>Noncontact orientation of objects in three-dimensional space using magnetic levitation</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Subramaniam, Anand Bala ; Yang, Dian ; Yu, Hai-Dong ; Nemiroski, Alex ; Tricard, Simon ; Ellerbee, Audrey K. ; Soh, Siowling ; Whitesides, George M.</creator><creatorcontrib>Subramaniam, Anand Bala ; Yang, Dian ; Yu, Hai-Dong ; Nemiroski, Alex ; Tricard, Simon ; Ellerbee, Audrey K. ; Soh, Siowling ; Whitesides, George M.</creatorcontrib><description>This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1408705111</identifier><identifier>PMID: 25157136</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Analytical chemistry ; biomimetics ; Catalysis ; Chemical Physics ; Chemical Sciences ; Condensed Matter ; Coordination chemistry ; Density ; Geometric shapes ; Hydrogels ; Liquids ; Magnetic fields ; Magnetic levitation ; Magnetism ; Magnets ; Material chemistry ; Materials Science ; Mechanical properties ; Narrative devices ; Physical properties ; Physical Sciences ; Physics ; Polymers ; Robotics ; Robots ; Three dimensional imaging ; Vector space</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-09, Vol.111 (36), p.12980-12985</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 9, 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-93bd8238f1ee275d3dc4c97d608572c0a37723a0cc8afd14ec7008d027f21acd3</citedby><cites>FETCH-LOGICAL-c601t-93bd8238f1ee275d3dc4c97d608572c0a37723a0cc8afd14ec7008d027f21acd3</cites><orcidid>0000-0002-0061-8578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/36.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43043267$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43043267$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25157136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://insa-toulouse.hal.science/hal-02405633$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Subramaniam, Anand Bala</creatorcontrib><creatorcontrib>Yang, Dian</creatorcontrib><creatorcontrib>Yu, Hai-Dong</creatorcontrib><creatorcontrib>Nemiroski, Alex</creatorcontrib><creatorcontrib>Tricard, Simon</creatorcontrib><creatorcontrib>Ellerbee, Audrey K.</creatorcontrib><creatorcontrib>Soh, Siowling</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><title>Noncontact orientation of objects in three-dimensional space using magnetic levitation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media.</description><subject>Analytical chemistry</subject><subject>biomimetics</subject><subject>Catalysis</subject><subject>Chemical Physics</subject><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Coordination chemistry</subject><subject>Density</subject><subject>Geometric shapes</subject><subject>Hydrogels</subject><subject>Liquids</subject><subject>Magnetic fields</subject><subject>Magnetic levitation</subject><subject>Magnetism</subject><subject>Magnets</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Narrative devices</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Polymers</subject><subject>Robotics</subject><subject>Robots</subject><subject>Three dimensional imaging</subject><subject>Vector space</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkkGP0zAQhS0EYsvCmRMoEhc4ZHfGdmzngrRaAYtUwQW4Wq7jtK4Su8RJJf49DikF9sLJlud7b8YzQ8hzhCsEya4PwaQr5KAkVIj4gKwQaiwFr-EhWQFQWSpO-QV5ktIeAOpKwWNyQSusJDKxIt8-xWBjGI0dizh4l2-jj6GIbRE3e2fHVPhQjLvBubLxvQspR01XpIOxrpiSD9uiN9vgRm-Lzh39on9KHrWmS-7Z6bwkX9-_-3J7V64_f_h4e7MurQAcy5ptGkWZatE5KquGNZbbWjYCVCWpBcOkpMyAtcq0DXJnJYBq8rdaisY27JK8XXwP06Z3jc31D6bTh8H3Zviho_H630jwO72NR52bImrOs8GbxWB3T3Z3s9bzG1AOlWDsiJl9fUo2xO-TS6PufbKu60xwcUoaFTDkyGr4P1oJzAVIMVfw6h66j9OQe_yL4nlowGfD64WyQ0xpcO25WAQ9r4KeV0H_WYWsePl3a87879lnoDgBs_Jsh6iZ0EhrNWd9sSD7NMbhzHAGnFEh2U-omsNm</recordid><startdate>20140909</startdate><enddate>20140909</enddate><creator>Subramaniam, Anand Bala</creator><creator>Yang, Dian</creator><creator>Yu, Hai-Dong</creator><creator>Nemiroski, Alex</creator><creator>Tricard, Simon</creator><creator>Ellerbee, Audrey K.</creator><creator>Soh, Siowling</creator><creator>Whitesides, George M.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0061-8578</orcidid></search><sort><creationdate>20140909</creationdate><title>Noncontact orientation of objects in three-dimensional space using magnetic levitation</title><author>Subramaniam, Anand Bala ; Yang, Dian ; Yu, Hai-Dong ; Nemiroski, Alex ; Tricard, Simon ; Ellerbee, Audrey K. ; Soh, Siowling ; Whitesides, George M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-93bd8238f1ee275d3dc4c97d608572c0a37723a0cc8afd14ec7008d027f21acd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytical chemistry</topic><topic>biomimetics</topic><topic>Catalysis</topic><topic>Chemical Physics</topic><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Coordination chemistry</topic><topic>Density</topic><topic>Geometric shapes</topic><topic>Hydrogels</topic><topic>Liquids</topic><topic>Magnetic fields</topic><topic>Magnetic levitation</topic><topic>Magnetism</topic><topic>Magnets</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Narrative devices</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Polymers</topic><topic>Robotics</topic><topic>Robots</topic><topic>Three dimensional imaging</topic><topic>Vector space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramaniam, Anand Bala</creatorcontrib><creatorcontrib>Yang, Dian</creatorcontrib><creatorcontrib>Yu, Hai-Dong</creatorcontrib><creatorcontrib>Nemiroski, Alex</creatorcontrib><creatorcontrib>Tricard, Simon</creatorcontrib><creatorcontrib>Ellerbee, Audrey K.</creatorcontrib><creatorcontrib>Soh, Siowling</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramaniam, Anand Bala</au><au>Yang, Dian</au><au>Yu, Hai-Dong</au><au>Nemiroski, Alex</au><au>Tricard, Simon</au><au>Ellerbee, Audrey K.</au><au>Soh, Siowling</au><au>Whitesides, George M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncontact orientation of objects in three-dimensional space using magnetic levitation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-09-09</date><risdate>2014</risdate><volume>111</volume><issue>36</issue><spage>12980</spage><epage>12985</epage><pages>12980-12985</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25157136</pmid><doi>10.1073/pnas.1408705111</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0061-8578</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-09, Vol.111 (36), p.12980-12985
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1408705111
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Analytical chemistry
biomimetics
Catalysis
Chemical Physics
Chemical Sciences
Condensed Matter
Coordination chemistry
Density
Geometric shapes
Hydrogels
Liquids
Magnetic fields
Magnetic levitation
Magnetism
Magnets
Material chemistry
Materials Science
Mechanical properties
Narrative devices
Physical properties
Physical Sciences
Physics
Polymers
Robotics
Robots
Three dimensional imaging
Vector space
title Noncontact orientation of objects in three-dimensional space using magnetic levitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A23%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncontact%20orientation%20of%20objects%20in%20three-dimensional%20space%20using%20magnetic%20levitation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Subramaniam,%20Anand%20Bala&rft.date=2014-09-09&rft.volume=111&rft.issue=36&rft.spage=12980&rft.epage=12985&rft.pages=12980-12985&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1408705111&rft_dat=%3Cjstor_cross%3E43043267%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1564000040&rft_id=info:pmid/25157136&rft_jstor_id=43043267&rfr_iscdi=true