Noncontact orientation of objects in three-dimensional space using magnetic levitation
This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external fo...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-09, Vol.111 (36), p.12980-12985 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12985 |
---|---|
container_issue | 36 |
container_start_page | 12980 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Subramaniam, Anand Bala Yang, Dian Yu, Hai-Dong Nemiroski, Alex Tricard, Simon Ellerbee, Audrey K. Soh, Siowling Whitesides, George M. |
description | This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media. |
doi_str_mv | 10.1073/pnas.1408705111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1408705111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43043267</jstor_id><sourcerecordid>43043267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-93bd8238f1ee275d3dc4c97d608572c0a37723a0cc8afd14ec7008d027f21acd3</originalsourceid><addsrcrecordid>eNqFkkGP0zAQhS0EYsvCmRMoEhc4ZHfGdmzngrRaAYtUwQW4Wq7jtK4Su8RJJf49DikF9sLJlud7b8YzQ8hzhCsEya4PwaQr5KAkVIj4gKwQaiwFr-EhWQFQWSpO-QV5ktIeAOpKwWNyQSusJDKxIt8-xWBjGI0dizh4l2-jj6GIbRE3e2fHVPhQjLvBubLxvQspR01XpIOxrpiSD9uiN9vgRm-Lzh39on9KHrWmS-7Z6bwkX9-_-3J7V64_f_h4e7MurQAcy5ptGkWZatE5KquGNZbbWjYCVCWpBcOkpMyAtcq0DXJnJYBq8rdaisY27JK8XXwP06Z3jc31D6bTh8H3Zviho_H630jwO72NR52bImrOs8GbxWB3T3Z3s9bzG1AOlWDsiJl9fUo2xO-TS6PufbKu60xwcUoaFTDkyGr4P1oJzAVIMVfw6h66j9OQe_yL4nlowGfD64WyQ0xpcO25WAQ9r4KeV0H_WYWsePl3a87879lnoDgBs_Jsh6iZ0EhrNWd9sSD7NMbhzHAGnFEh2U-omsNm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564000040</pqid></control><display><type>article</type><title>Noncontact orientation of objects in three-dimensional space using magnetic levitation</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Subramaniam, Anand Bala ; Yang, Dian ; Yu, Hai-Dong ; Nemiroski, Alex ; Tricard, Simon ; Ellerbee, Audrey K. ; Soh, Siowling ; Whitesides, George M.</creator><creatorcontrib>Subramaniam, Anand Bala ; Yang, Dian ; Yu, Hai-Dong ; Nemiroski, Alex ; Tricard, Simon ; Ellerbee, Audrey K. ; Soh, Siowling ; Whitesides, George M.</creatorcontrib><description>This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1408705111</identifier><identifier>PMID: 25157136</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Analytical chemistry ; biomimetics ; Catalysis ; Chemical Physics ; Chemical Sciences ; Condensed Matter ; Coordination chemistry ; Density ; Geometric shapes ; Hydrogels ; Liquids ; Magnetic fields ; Magnetic levitation ; Magnetism ; Magnets ; Material chemistry ; Materials Science ; Mechanical properties ; Narrative devices ; Physical properties ; Physical Sciences ; Physics ; Polymers ; Robotics ; Robots ; Three dimensional imaging ; Vector space</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-09, Vol.111 (36), p.12980-12985</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 9, 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-93bd8238f1ee275d3dc4c97d608572c0a37723a0cc8afd14ec7008d027f21acd3</citedby><cites>FETCH-LOGICAL-c601t-93bd8238f1ee275d3dc4c97d608572c0a37723a0cc8afd14ec7008d027f21acd3</cites><orcidid>0000-0002-0061-8578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/36.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43043267$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43043267$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25157136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://insa-toulouse.hal.science/hal-02405633$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Subramaniam, Anand Bala</creatorcontrib><creatorcontrib>Yang, Dian</creatorcontrib><creatorcontrib>Yu, Hai-Dong</creatorcontrib><creatorcontrib>Nemiroski, Alex</creatorcontrib><creatorcontrib>Tricard, Simon</creatorcontrib><creatorcontrib>Ellerbee, Audrey K.</creatorcontrib><creatorcontrib>Soh, Siowling</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><title>Noncontact orientation of objects in three-dimensional space using magnetic levitation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media.</description><subject>Analytical chemistry</subject><subject>biomimetics</subject><subject>Catalysis</subject><subject>Chemical Physics</subject><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Coordination chemistry</subject><subject>Density</subject><subject>Geometric shapes</subject><subject>Hydrogels</subject><subject>Liquids</subject><subject>Magnetic fields</subject><subject>Magnetic levitation</subject><subject>Magnetism</subject><subject>Magnets</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Narrative devices</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Polymers</subject><subject>Robotics</subject><subject>Robots</subject><subject>Three dimensional imaging</subject><subject>Vector space</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkkGP0zAQhS0EYsvCmRMoEhc4ZHfGdmzngrRaAYtUwQW4Wq7jtK4Su8RJJf49DikF9sLJlud7b8YzQ8hzhCsEya4PwaQr5KAkVIj4gKwQaiwFr-EhWQFQWSpO-QV5ktIeAOpKwWNyQSusJDKxIt8-xWBjGI0dizh4l2-jj6GIbRE3e2fHVPhQjLvBubLxvQspR01XpIOxrpiSD9uiN9vgRm-Lzh39on9KHrWmS-7Z6bwkX9-_-3J7V64_f_h4e7MurQAcy5ptGkWZatE5KquGNZbbWjYCVCWpBcOkpMyAtcq0DXJnJYBq8rdaisY27JK8XXwP06Z3jc31D6bTh8H3Zviho_H630jwO72NR52bImrOs8GbxWB3T3Z3s9bzG1AOlWDsiJl9fUo2xO-TS6PufbKu60xwcUoaFTDkyGr4P1oJzAVIMVfw6h66j9OQe_yL4nlowGfD64WyQ0xpcO25WAQ9r4KeV0H_WYWsePl3a87879lnoDgBs_Jsh6iZ0EhrNWd9sSD7NMbhzHAGnFEh2U-omsNm</recordid><startdate>20140909</startdate><enddate>20140909</enddate><creator>Subramaniam, Anand Bala</creator><creator>Yang, Dian</creator><creator>Yu, Hai-Dong</creator><creator>Nemiroski, Alex</creator><creator>Tricard, Simon</creator><creator>Ellerbee, Audrey K.</creator><creator>Soh, Siowling</creator><creator>Whitesides, George M.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0061-8578</orcidid></search><sort><creationdate>20140909</creationdate><title>Noncontact orientation of objects in three-dimensional space using magnetic levitation</title><author>Subramaniam, Anand Bala ; Yang, Dian ; Yu, Hai-Dong ; Nemiroski, Alex ; Tricard, Simon ; Ellerbee, Audrey K. ; Soh, Siowling ; Whitesides, George M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-93bd8238f1ee275d3dc4c97d608572c0a37723a0cc8afd14ec7008d027f21acd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytical chemistry</topic><topic>biomimetics</topic><topic>Catalysis</topic><topic>Chemical Physics</topic><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Coordination chemistry</topic><topic>Density</topic><topic>Geometric shapes</topic><topic>Hydrogels</topic><topic>Liquids</topic><topic>Magnetic fields</topic><topic>Magnetic levitation</topic><topic>Magnetism</topic><topic>Magnets</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Narrative devices</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Polymers</topic><topic>Robotics</topic><topic>Robots</topic><topic>Three dimensional imaging</topic><topic>Vector space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramaniam, Anand Bala</creatorcontrib><creatorcontrib>Yang, Dian</creatorcontrib><creatorcontrib>Yu, Hai-Dong</creatorcontrib><creatorcontrib>Nemiroski, Alex</creatorcontrib><creatorcontrib>Tricard, Simon</creatorcontrib><creatorcontrib>Ellerbee, Audrey K.</creatorcontrib><creatorcontrib>Soh, Siowling</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramaniam, Anand Bala</au><au>Yang, Dian</au><au>Yu, Hai-Dong</au><au>Nemiroski, Alex</au><au>Tricard, Simon</au><au>Ellerbee, Audrey K.</au><au>Soh, Siowling</au><au>Whitesides, George M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncontact orientation of objects in three-dimensional space using magnetic levitation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-09-09</date><risdate>2014</risdate><volume>111</volume><issue>36</issue><spage>12980</spage><epage>12985</epage><pages>12980-12985</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25157136</pmid><doi>10.1073/pnas.1408705111</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0061-8578</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-09, Vol.111 (36), p.12980-12985 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1408705111 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Analytical chemistry biomimetics Catalysis Chemical Physics Chemical Sciences Condensed Matter Coordination chemistry Density Geometric shapes Hydrogels Liquids Magnetic fields Magnetic levitation Magnetism Magnets Material chemistry Materials Science Mechanical properties Narrative devices Physical properties Physical Sciences Physics Polymers Robotics Robots Three dimensional imaging Vector space |
title | Noncontact orientation of objects in three-dimensional space using magnetic levitation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A23%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncontact%20orientation%20of%20objects%20in%20three-dimensional%20space%20using%20magnetic%20levitation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Subramaniam,%20Anand%20Bala&rft.date=2014-09-09&rft.volume=111&rft.issue=36&rft.spage=12980&rft.epage=12985&rft.pages=12980-12985&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1408705111&rft_dat=%3Cjstor_cross%3E43043267%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1564000040&rft_id=info:pmid/25157136&rft_jstor_id=43043267&rfr_iscdi=true |