Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila

Neurons rely on glia to recycle neurotransmitters such as glutamate and histamine for sustained signaling. Both mammalian and insect glia form intercellular gap-junction networks, but their functional significance underlying neurotransmitter recycling is unknown. Using the Drosophila visual system a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-02, Vol.111 (7), p.2812-2817
Hauptverfasser: Chaturvedi, Ratna, Reddig, Keith, Li, Hong-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2817
container_issue 7
container_start_page 2812
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Chaturvedi, Ratna
Reddig, Keith
Li, Hong-Sheng
description Neurons rely on glia to recycle neurotransmitters such as glutamate and histamine for sustained signaling. Both mammalian and insect glia form intercellular gap-junction networks, but their functional significance underlying neurotransmitter recycling is unknown. Using the Drosophila visual system as a genetic model, here we show that a multicellular glial network transports neurotransmitter metabolites between perisynaptic glia and neuronal cell bodies to mediate long-distance recycling of neurotransmitter. In the first visual neuropil (lamina), which contains a multilayer glial network, photoreceptor axons release histamine to hyperpolarize secondary sensory neurons. Subsequently, the released histamine is taken up by perisynaptic epithelial glia and converted into inactive carcinine through conjugation with β-alanine for transport. In contrast to a previous assumption that epithelial glia deliver carcinine directly back to photoreceptor axons for histamine regeneration within the lamina, we detected both carcinine and β-alanine in the fly retina, where they are found in photoreceptor cell bodies and surrounding pigment glial cells. Downregulating Inx2 gap junctions within the laminar glial network causes β-alanine accumulation in retinal pigment cells and impairs carcinine synthesis, leading to reduced histamine levels and photoreceptor synaptic vesicles. Consequently, visual transmission is impaired and the fly is less responsive in a visual alert analysis compared with wild type. Our results suggest that a gap junction-dependent laminar and retinal glial network transports histamine metabolites between perisynaptic glia and photoreceptor cell bodies to mediate a novel, long-distance mechanism of neurotransmitter recycling, highlighting the importance of glial networks in the regulation of neuronal functions.
doi_str_mv 10.1073/pnas.1323714111
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1323714111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23768969</jstor_id><sourcerecordid>23768969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-6ed6f25777de3fda0a113e16fa26497c51c8a94cdedccabde1db0b408a684c493</originalsourceid><addsrcrecordid>eNqNks1v1DAUxCMEokvhzAmIxIVL2vdix3EulVD5lFbiAD1bjuNkvST2YjtF-9_jdMu2cIGTD_N7I89osuw5whlCTc53VoYzJCWpkSLig2yF0GDBaAMPsxVAWReclvQkexLCFgCaisPj7KSkVQUEy1W2Xzs7FJ0JUVql80mrjbQmTLnrc6tn76KXNkwmRu1zr9VejcYOieuMjLrL230-jEaOCY4_nf-e91KZ0cQkhvzahDlJ_WxVNM7mxubvvAtutzGjfJo96uUY9LPb9zS7-vD-2-WnYv3l4-fLt-tCVRWLBdMd68uqrutOk76TIBGJRtbLMqWsVYWKy4aqTndKybbT2LXQUuCScapoQ06zi4Pvbm7Tt5W2KdIodt5M0u-Fk0b8qVizEYO7FqQhZUN4Mnhza-Ddj1mHKCYTlB5HabWbg0AOBBpacfZvtKIUIHXf_AcKwHhFblxf_4Vu3extKm2hkCU3RhJ1fqBUqjh43R8jIohlLGIZi7gbS7p4eb-ZI_97HfeA5fJohyhqUfIb4MUB2Ibo_J0BqRlv2BLy1UHvpRNy8CaIq6_l8mXApQgkvwAGONq1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1501609363</pqid></control><display><type>article</type><title>Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chaturvedi, Ratna ; Reddig, Keith ; Li, Hong-Sheng</creator><creatorcontrib>Chaturvedi, Ratna ; Reddig, Keith ; Li, Hong-Sheng</creatorcontrib><description>Neurons rely on glia to recycle neurotransmitters such as glutamate and histamine for sustained signaling. Both mammalian and insect glia form intercellular gap-junction networks, but their functional significance underlying neurotransmitter recycling is unknown. Using the Drosophila visual system as a genetic model, here we show that a multicellular glial network transports neurotransmitter metabolites between perisynaptic glia and neuronal cell bodies to mediate long-distance recycling of neurotransmitter. In the first visual neuropil (lamina), which contains a multilayer glial network, photoreceptor axons release histamine to hyperpolarize secondary sensory neurons. Subsequently, the released histamine is taken up by perisynaptic epithelial glia and converted into inactive carcinine through conjugation with β-alanine for transport. In contrast to a previous assumption that epithelial glia deliver carcinine directly back to photoreceptor axons for histamine regeneration within the lamina, we detected both carcinine and β-alanine in the fly retina, where they are found in photoreceptor cell bodies and surrounding pigment glial cells. Downregulating Inx2 gap junctions within the laminar glial network causes β-alanine accumulation in retinal pigment cells and impairs carcinine synthesis, leading to reduced histamine levels and photoreceptor synaptic vesicles. Consequently, visual transmission is impaired and the fly is less responsive in a visual alert analysis compared with wild type. Our results suggest that a gap junction-dependent laminar and retinal glial network transports histamine metabolites between perisynaptic glia and photoreceptor cell bodies to mediate a novel, long-distance mechanism of neurotransmitter recycling, highlighting the importance of glial networks in the regulation of neuronal functions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1323714111</identifier><identifier>PMID: 24550312</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Artificial satellites ; axons ; beta-Alanine - metabolism ; Biological Sciences ; Biological Transport - physiology ; Carnosine - analogs &amp; derivatives ; Carnosine - metabolism ; Cells ; Connexins - genetics ; Drosophila ; Drosophila melanogaster - physiology ; Drosophila Proteins - genetics ; Electroretinography ; Eyes &amp; eyesight ; Fluoroimmunoassay ; gap junctions ; Gene Knockdown Techniques ; glutamic acid ; Histamine ; Histamine - metabolism ; Histamines ; Insects ; mammals ; Metabolites ; Microscopy, Confocal ; Microscopy, Electron, Transmission ; Neuroglia ; Neuroglia - physiology ; Neurons ; Neurotransmitter Agents - metabolism ; Neurotransmitters ; Photoreceptor Cells, Invertebrate - physiology ; Photoreceptors ; Recycling ; Retina ; Retina - metabolism ; Retinal pigments ; RNA Interference ; sensory neurons ; Synaptic Transmission - physiology ; synaptic vesicles ; Vision, Ocular - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (7), p.2812-2817</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 18, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-6ed6f25777de3fda0a113e16fa26497c51c8a94cdedccabde1db0b408a684c493</citedby><cites>FETCH-LOGICAL-c556t-6ed6f25777de3fda0a113e16fa26497c51c8a94cdedccabde1db0b408a684c493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23768969$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23768969$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24550312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaturvedi, Ratna</creatorcontrib><creatorcontrib>Reddig, Keith</creatorcontrib><creatorcontrib>Li, Hong-Sheng</creatorcontrib><title>Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Neurons rely on glia to recycle neurotransmitters such as glutamate and histamine for sustained signaling. Both mammalian and insect glia form intercellular gap-junction networks, but their functional significance underlying neurotransmitter recycling is unknown. Using the Drosophila visual system as a genetic model, here we show that a multicellular glial network transports neurotransmitter metabolites between perisynaptic glia and neuronal cell bodies to mediate long-distance recycling of neurotransmitter. In the first visual neuropil (lamina), which contains a multilayer glial network, photoreceptor axons release histamine to hyperpolarize secondary sensory neurons. Subsequently, the released histamine is taken up by perisynaptic epithelial glia and converted into inactive carcinine through conjugation with β-alanine for transport. In contrast to a previous assumption that epithelial glia deliver carcinine directly back to photoreceptor axons for histamine regeneration within the lamina, we detected both carcinine and β-alanine in the fly retina, where they are found in photoreceptor cell bodies and surrounding pigment glial cells. Downregulating Inx2 gap junctions within the laminar glial network causes β-alanine accumulation in retinal pigment cells and impairs carcinine synthesis, leading to reduced histamine levels and photoreceptor synaptic vesicles. Consequently, visual transmission is impaired and the fly is less responsive in a visual alert analysis compared with wild type. Our results suggest that a gap junction-dependent laminar and retinal glial network transports histamine metabolites between perisynaptic glia and photoreceptor cell bodies to mediate a novel, long-distance mechanism of neurotransmitter recycling, highlighting the importance of glial networks in the regulation of neuronal functions.</description><subject>Animals</subject><subject>Artificial satellites</subject><subject>axons</subject><subject>beta-Alanine - metabolism</subject><subject>Biological Sciences</subject><subject>Biological Transport - physiology</subject><subject>Carnosine - analogs &amp; derivatives</subject><subject>Carnosine - metabolism</subject><subject>Cells</subject><subject>Connexins - genetics</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - physiology</subject><subject>Drosophila Proteins - genetics</subject><subject>Electroretinography</subject><subject>Eyes &amp; eyesight</subject><subject>Fluoroimmunoassay</subject><subject>gap junctions</subject><subject>Gene Knockdown Techniques</subject><subject>glutamic acid</subject><subject>Histamine</subject><subject>Histamine - metabolism</subject><subject>Histamines</subject><subject>Insects</subject><subject>mammals</subject><subject>Metabolites</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Electron, Transmission</subject><subject>Neuroglia</subject><subject>Neuroglia - physiology</subject><subject>Neurons</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Neurotransmitters</subject><subject>Photoreceptor Cells, Invertebrate - physiology</subject><subject>Photoreceptors</subject><subject>Recycling</subject><subject>Retina</subject><subject>Retina - metabolism</subject><subject>Retinal pigments</subject><subject>RNA Interference</subject><subject>sensory neurons</subject><subject>Synaptic Transmission - physiology</subject><subject>synaptic vesicles</subject><subject>Vision, Ocular - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1v1DAUxCMEokvhzAmIxIVL2vdix3EulVD5lFbiAD1bjuNkvST2YjtF-9_jdMu2cIGTD_N7I89osuw5whlCTc53VoYzJCWpkSLig2yF0GDBaAMPsxVAWReclvQkexLCFgCaisPj7KSkVQUEy1W2Xzs7FJ0JUVql80mrjbQmTLnrc6tn76KXNkwmRu1zr9VejcYOieuMjLrL230-jEaOCY4_nf-e91KZ0cQkhvzahDlJ_WxVNM7mxubvvAtutzGjfJo96uUY9LPb9zS7-vD-2-WnYv3l4-fLt-tCVRWLBdMd68uqrutOk76TIBGJRtbLMqWsVYWKy4aqTndKybbT2LXQUuCScapoQ06zi4Pvbm7Tt5W2KdIodt5M0u-Fk0b8qVizEYO7FqQhZUN4Mnhza-Ddj1mHKCYTlB5HabWbg0AOBBpacfZvtKIUIHXf_AcKwHhFblxf_4Vu3extKm2hkCU3RhJ1fqBUqjh43R8jIohlLGIZi7gbS7p4eb-ZI_97HfeA5fJohyhqUfIb4MUB2Ibo_J0BqRlv2BLy1UHvpRNy8CaIq6_l8mXApQgkvwAGONq1</recordid><startdate>20140218</startdate><enddate>20140218</enddate><creator>Chaturvedi, Ratna</creator><creator>Reddig, Keith</creator><creator>Li, Hong-Sheng</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140218</creationdate><title>Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila</title><author>Chaturvedi, Ratna ; Reddig, Keith ; Li, Hong-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-6ed6f25777de3fda0a113e16fa26497c51c8a94cdedccabde1db0b408a684c493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Artificial satellites</topic><topic>axons</topic><topic>beta-Alanine - metabolism</topic><topic>Biological Sciences</topic><topic>Biological Transport - physiology</topic><topic>Carnosine - analogs &amp; derivatives</topic><topic>Carnosine - metabolism</topic><topic>Cells</topic><topic>Connexins - genetics</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - physiology</topic><topic>Drosophila Proteins - genetics</topic><topic>Electroretinography</topic><topic>Eyes &amp; eyesight</topic><topic>Fluoroimmunoassay</topic><topic>gap junctions</topic><topic>Gene Knockdown Techniques</topic><topic>glutamic acid</topic><topic>Histamine</topic><topic>Histamine - metabolism</topic><topic>Histamines</topic><topic>Insects</topic><topic>mammals</topic><topic>Metabolites</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Electron, Transmission</topic><topic>Neuroglia</topic><topic>Neuroglia - physiology</topic><topic>Neurons</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Neurotransmitters</topic><topic>Photoreceptor Cells, Invertebrate - physiology</topic><topic>Photoreceptors</topic><topic>Recycling</topic><topic>Retina</topic><topic>Retina - metabolism</topic><topic>Retinal pigments</topic><topic>RNA Interference</topic><topic>sensory neurons</topic><topic>Synaptic Transmission - physiology</topic><topic>synaptic vesicles</topic><topic>Vision, Ocular - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaturvedi, Ratna</creatorcontrib><creatorcontrib>Reddig, Keith</creatorcontrib><creatorcontrib>Li, Hong-Sheng</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaturvedi, Ratna</au><au>Reddig, Keith</au><au>Li, Hong-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-02-18</date><risdate>2014</risdate><volume>111</volume><issue>7</issue><spage>2812</spage><epage>2817</epage><pages>2812-2817</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Neurons rely on glia to recycle neurotransmitters such as glutamate and histamine for sustained signaling. Both mammalian and insect glia form intercellular gap-junction networks, but their functional significance underlying neurotransmitter recycling is unknown. Using the Drosophila visual system as a genetic model, here we show that a multicellular glial network transports neurotransmitter metabolites between perisynaptic glia and neuronal cell bodies to mediate long-distance recycling of neurotransmitter. In the first visual neuropil (lamina), which contains a multilayer glial network, photoreceptor axons release histamine to hyperpolarize secondary sensory neurons. Subsequently, the released histamine is taken up by perisynaptic epithelial glia and converted into inactive carcinine through conjugation with β-alanine for transport. In contrast to a previous assumption that epithelial glia deliver carcinine directly back to photoreceptor axons for histamine regeneration within the lamina, we detected both carcinine and β-alanine in the fly retina, where they are found in photoreceptor cell bodies and surrounding pigment glial cells. Downregulating Inx2 gap junctions within the laminar glial network causes β-alanine accumulation in retinal pigment cells and impairs carcinine synthesis, leading to reduced histamine levels and photoreceptor synaptic vesicles. Consequently, visual transmission is impaired and the fly is less responsive in a visual alert analysis compared with wild type. Our results suggest that a gap junction-dependent laminar and retinal glial network transports histamine metabolites between perisynaptic glia and photoreceptor cell bodies to mediate a novel, long-distance mechanism of neurotransmitter recycling, highlighting the importance of glial networks in the regulation of neuronal functions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24550312</pmid><doi>10.1073/pnas.1323714111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (7), p.2812-2817
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1323714111
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Artificial satellites
axons
beta-Alanine - metabolism
Biological Sciences
Biological Transport - physiology
Carnosine - analogs & derivatives
Carnosine - metabolism
Cells
Connexins - genetics
Drosophila
Drosophila melanogaster - physiology
Drosophila Proteins - genetics
Electroretinography
Eyes & eyesight
Fluoroimmunoassay
gap junctions
Gene Knockdown Techniques
glutamic acid
Histamine
Histamine - metabolism
Histamines
Insects
mammals
Metabolites
Microscopy, Confocal
Microscopy, Electron, Transmission
Neuroglia
Neuroglia - physiology
Neurons
Neurotransmitter Agents - metabolism
Neurotransmitters
Photoreceptor Cells, Invertebrate - physiology
Photoreceptors
Recycling
Retina
Retina - metabolism
Retinal pigments
RNA Interference
sensory neurons
Synaptic Transmission - physiology
synaptic vesicles
Vision, Ocular - physiology
title Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-distance%20mechanism%20of%20neurotransmitter%20recycling%20mediated%20by%20glial%20network%20facilitates%20visual%20function%20in%20Drosophila&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chaturvedi,%20Ratna&rft.date=2014-02-18&rft.volume=111&rft.issue=7&rft.spage=2812&rft.epage=2817&rft.pages=2812-2817&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1323714111&rft_dat=%3Cjstor_cross%3E23768969%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1501609363&rft_id=info:pmid/24550312&rft_jstor_id=23768969&rfr_iscdi=true