Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila
Neurons rely on glia to recycle neurotransmitters such as glutamate and histamine for sustained signaling. Both mammalian and insect glia form intercellular gap-junction networks, but their functional significance underlying neurotransmitter recycling is unknown. Using the Drosophila visual system a...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-02, Vol.111 (7), p.2812-2817 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2817 |
---|---|
container_issue | 7 |
container_start_page | 2812 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Chaturvedi, Ratna Reddig, Keith Li, Hong-Sheng |
description | Neurons rely on glia to recycle neurotransmitters such as glutamate and histamine for sustained signaling. Both mammalian and insect glia form intercellular gap-junction networks, but their functional significance underlying neurotransmitter recycling is unknown. Using the Drosophila visual system as a genetic model, here we show that a multicellular glial network transports neurotransmitter metabolites between perisynaptic glia and neuronal cell bodies to mediate long-distance recycling of neurotransmitter. In the first visual neuropil (lamina), which contains a multilayer glial network, photoreceptor axons release histamine to hyperpolarize secondary sensory neurons. Subsequently, the released histamine is taken up by perisynaptic epithelial glia and converted into inactive carcinine through conjugation with β-alanine for transport. In contrast to a previous assumption that epithelial glia deliver carcinine directly back to photoreceptor axons for histamine regeneration within the lamina, we detected both carcinine and β-alanine in the fly retina, where they are found in photoreceptor cell bodies and surrounding pigment glial cells. Downregulating Inx2 gap junctions within the laminar glial network causes β-alanine accumulation in retinal pigment cells and impairs carcinine synthesis, leading to reduced histamine levels and photoreceptor synaptic vesicles. Consequently, visual transmission is impaired and the fly is less responsive in a visual alert analysis compared with wild type. Our results suggest that a gap junction-dependent laminar and retinal glial network transports histamine metabolites between perisynaptic glia and photoreceptor cell bodies to mediate a novel, long-distance mechanism of neurotransmitter recycling, highlighting the importance of glial networks in the regulation of neuronal functions. |
doi_str_mv | 10.1073/pnas.1323714111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1323714111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23768969</jstor_id><sourcerecordid>23768969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-6ed6f25777de3fda0a113e16fa26497c51c8a94cdedccabde1db0b408a684c493</originalsourceid><addsrcrecordid>eNqNks1v1DAUxCMEokvhzAmIxIVL2vdix3EulVD5lFbiAD1bjuNkvST2YjtF-9_jdMu2cIGTD_N7I89osuw5whlCTc53VoYzJCWpkSLig2yF0GDBaAMPsxVAWReclvQkexLCFgCaisPj7KSkVQUEy1W2Xzs7FJ0JUVql80mrjbQmTLnrc6tn76KXNkwmRu1zr9VejcYOieuMjLrL230-jEaOCY4_nf-e91KZ0cQkhvzahDlJ_WxVNM7mxubvvAtutzGjfJo96uUY9LPb9zS7-vD-2-WnYv3l4-fLt-tCVRWLBdMd68uqrutOk76TIBGJRtbLMqWsVYWKy4aqTndKybbT2LXQUuCScapoQ06zi4Pvbm7Tt5W2KdIodt5M0u-Fk0b8qVizEYO7FqQhZUN4Mnhza-Ddj1mHKCYTlB5HabWbg0AOBBpacfZvtKIUIHXf_AcKwHhFblxf_4Vu3extKm2hkCU3RhJ1fqBUqjh43R8jIohlLGIZi7gbS7p4eb-ZI_97HfeA5fJohyhqUfIb4MUB2Ibo_J0BqRlv2BLy1UHvpRNy8CaIq6_l8mXApQgkvwAGONq1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1501609363</pqid></control><display><type>article</type><title>Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chaturvedi, Ratna ; Reddig, Keith ; Li, Hong-Sheng</creator><creatorcontrib>Chaturvedi, Ratna ; Reddig, Keith ; Li, Hong-Sheng</creatorcontrib><description>Neurons rely on glia to recycle neurotransmitters such as glutamate and histamine for sustained signaling. Both mammalian and insect glia form intercellular gap-junction networks, but their functional significance underlying neurotransmitter recycling is unknown. Using the Drosophila visual system as a genetic model, here we show that a multicellular glial network transports neurotransmitter metabolites between perisynaptic glia and neuronal cell bodies to mediate long-distance recycling of neurotransmitter. In the first visual neuropil (lamina), which contains a multilayer glial network, photoreceptor axons release histamine to hyperpolarize secondary sensory neurons. Subsequently, the released histamine is taken up by perisynaptic epithelial glia and converted into inactive carcinine through conjugation with β-alanine for transport. In contrast to a previous assumption that epithelial glia deliver carcinine directly back to photoreceptor axons for histamine regeneration within the lamina, we detected both carcinine and β-alanine in the fly retina, where they are found in photoreceptor cell bodies and surrounding pigment glial cells. Downregulating Inx2 gap junctions within the laminar glial network causes β-alanine accumulation in retinal pigment cells and impairs carcinine synthesis, leading to reduced histamine levels and photoreceptor synaptic vesicles. Consequently, visual transmission is impaired and the fly is less responsive in a visual alert analysis compared with wild type. Our results suggest that a gap junction-dependent laminar and retinal glial network transports histamine metabolites between perisynaptic glia and photoreceptor cell bodies to mediate a novel, long-distance mechanism of neurotransmitter recycling, highlighting the importance of glial networks in the regulation of neuronal functions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1323714111</identifier><identifier>PMID: 24550312</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Artificial satellites ; axons ; beta-Alanine - metabolism ; Biological Sciences ; Biological Transport - physiology ; Carnosine - analogs & derivatives ; Carnosine - metabolism ; Cells ; Connexins - genetics ; Drosophila ; Drosophila melanogaster - physiology ; Drosophila Proteins - genetics ; Electroretinography ; Eyes & eyesight ; Fluoroimmunoassay ; gap junctions ; Gene Knockdown Techniques ; glutamic acid ; Histamine ; Histamine - metabolism ; Histamines ; Insects ; mammals ; Metabolites ; Microscopy, Confocal ; Microscopy, Electron, Transmission ; Neuroglia ; Neuroglia - physiology ; Neurons ; Neurotransmitter Agents - metabolism ; Neurotransmitters ; Photoreceptor Cells, Invertebrate - physiology ; Photoreceptors ; Recycling ; Retina ; Retina - metabolism ; Retinal pigments ; RNA Interference ; sensory neurons ; Synaptic Transmission - physiology ; synaptic vesicles ; Vision, Ocular - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (7), p.2812-2817</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 18, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-6ed6f25777de3fda0a113e16fa26497c51c8a94cdedccabde1db0b408a684c493</citedby><cites>FETCH-LOGICAL-c556t-6ed6f25777de3fda0a113e16fa26497c51c8a94cdedccabde1db0b408a684c493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23768969$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23768969$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24550312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaturvedi, Ratna</creatorcontrib><creatorcontrib>Reddig, Keith</creatorcontrib><creatorcontrib>Li, Hong-Sheng</creatorcontrib><title>Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Neurons rely on glia to recycle neurotransmitters such as glutamate and histamine for sustained signaling. Both mammalian and insect glia form intercellular gap-junction networks, but their functional significance underlying neurotransmitter recycling is unknown. Using the Drosophila visual system as a genetic model, here we show that a multicellular glial network transports neurotransmitter metabolites between perisynaptic glia and neuronal cell bodies to mediate long-distance recycling of neurotransmitter. In the first visual neuropil (lamina), which contains a multilayer glial network, photoreceptor axons release histamine to hyperpolarize secondary sensory neurons. Subsequently, the released histamine is taken up by perisynaptic epithelial glia and converted into inactive carcinine through conjugation with β-alanine for transport. In contrast to a previous assumption that epithelial glia deliver carcinine directly back to photoreceptor axons for histamine regeneration within the lamina, we detected both carcinine and β-alanine in the fly retina, where they are found in photoreceptor cell bodies and surrounding pigment glial cells. Downregulating Inx2 gap junctions within the laminar glial network causes β-alanine accumulation in retinal pigment cells and impairs carcinine synthesis, leading to reduced histamine levels and photoreceptor synaptic vesicles. Consequently, visual transmission is impaired and the fly is less responsive in a visual alert analysis compared with wild type. Our results suggest that a gap junction-dependent laminar and retinal glial network transports histamine metabolites between perisynaptic glia and photoreceptor cell bodies to mediate a novel, long-distance mechanism of neurotransmitter recycling, highlighting the importance of glial networks in the regulation of neuronal functions.</description><subject>Animals</subject><subject>Artificial satellites</subject><subject>axons</subject><subject>beta-Alanine - metabolism</subject><subject>Biological Sciences</subject><subject>Biological Transport - physiology</subject><subject>Carnosine - analogs & derivatives</subject><subject>Carnosine - metabolism</subject><subject>Cells</subject><subject>Connexins - genetics</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - physiology</subject><subject>Drosophila Proteins - genetics</subject><subject>Electroretinography</subject><subject>Eyes & eyesight</subject><subject>Fluoroimmunoassay</subject><subject>gap junctions</subject><subject>Gene Knockdown Techniques</subject><subject>glutamic acid</subject><subject>Histamine</subject><subject>Histamine - metabolism</subject><subject>Histamines</subject><subject>Insects</subject><subject>mammals</subject><subject>Metabolites</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Electron, Transmission</subject><subject>Neuroglia</subject><subject>Neuroglia - physiology</subject><subject>Neurons</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Neurotransmitters</subject><subject>Photoreceptor Cells, Invertebrate - physiology</subject><subject>Photoreceptors</subject><subject>Recycling</subject><subject>Retina</subject><subject>Retina - metabolism</subject><subject>Retinal pigments</subject><subject>RNA Interference</subject><subject>sensory neurons</subject><subject>Synaptic Transmission - physiology</subject><subject>synaptic vesicles</subject><subject>Vision, Ocular - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1v1DAUxCMEokvhzAmIxIVL2vdix3EulVD5lFbiAD1bjuNkvST2YjtF-9_jdMu2cIGTD_N7I89osuw5whlCTc53VoYzJCWpkSLig2yF0GDBaAMPsxVAWReclvQkexLCFgCaisPj7KSkVQUEy1W2Xzs7FJ0JUVql80mrjbQmTLnrc6tn76KXNkwmRu1zr9VejcYOieuMjLrL230-jEaOCY4_nf-e91KZ0cQkhvzahDlJ_WxVNM7mxubvvAtutzGjfJo96uUY9LPb9zS7-vD-2-WnYv3l4-fLt-tCVRWLBdMd68uqrutOk76TIBGJRtbLMqWsVYWKy4aqTndKybbT2LXQUuCScapoQ06zi4Pvbm7Tt5W2KdIodt5M0u-Fk0b8qVizEYO7FqQhZUN4Mnhza-Ddj1mHKCYTlB5HabWbg0AOBBpacfZvtKIUIHXf_AcKwHhFblxf_4Vu3extKm2hkCU3RhJ1fqBUqjh43R8jIohlLGIZi7gbS7p4eb-ZI_97HfeA5fJohyhqUfIb4MUB2Ibo_J0BqRlv2BLy1UHvpRNy8CaIq6_l8mXApQgkvwAGONq1</recordid><startdate>20140218</startdate><enddate>20140218</enddate><creator>Chaturvedi, Ratna</creator><creator>Reddig, Keith</creator><creator>Li, Hong-Sheng</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140218</creationdate><title>Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila</title><author>Chaturvedi, Ratna ; Reddig, Keith ; Li, Hong-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-6ed6f25777de3fda0a113e16fa26497c51c8a94cdedccabde1db0b408a684c493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Artificial satellites</topic><topic>axons</topic><topic>beta-Alanine - metabolism</topic><topic>Biological Sciences</topic><topic>Biological Transport - physiology</topic><topic>Carnosine - analogs & derivatives</topic><topic>Carnosine - metabolism</topic><topic>Cells</topic><topic>Connexins - genetics</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - physiology</topic><topic>Drosophila Proteins - genetics</topic><topic>Electroretinography</topic><topic>Eyes & eyesight</topic><topic>Fluoroimmunoassay</topic><topic>gap junctions</topic><topic>Gene Knockdown Techniques</topic><topic>glutamic acid</topic><topic>Histamine</topic><topic>Histamine - metabolism</topic><topic>Histamines</topic><topic>Insects</topic><topic>mammals</topic><topic>Metabolites</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Electron, Transmission</topic><topic>Neuroglia</topic><topic>Neuroglia - physiology</topic><topic>Neurons</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Neurotransmitters</topic><topic>Photoreceptor Cells, Invertebrate - physiology</topic><topic>Photoreceptors</topic><topic>Recycling</topic><topic>Retina</topic><topic>Retina - metabolism</topic><topic>Retinal pigments</topic><topic>RNA Interference</topic><topic>sensory neurons</topic><topic>Synaptic Transmission - physiology</topic><topic>synaptic vesicles</topic><topic>Vision, Ocular - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaturvedi, Ratna</creatorcontrib><creatorcontrib>Reddig, Keith</creatorcontrib><creatorcontrib>Li, Hong-Sheng</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaturvedi, Ratna</au><au>Reddig, Keith</au><au>Li, Hong-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-02-18</date><risdate>2014</risdate><volume>111</volume><issue>7</issue><spage>2812</spage><epage>2817</epage><pages>2812-2817</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Neurons rely on glia to recycle neurotransmitters such as glutamate and histamine for sustained signaling. Both mammalian and insect glia form intercellular gap-junction networks, but their functional significance underlying neurotransmitter recycling is unknown. Using the Drosophila visual system as a genetic model, here we show that a multicellular glial network transports neurotransmitter metabolites between perisynaptic glia and neuronal cell bodies to mediate long-distance recycling of neurotransmitter. In the first visual neuropil (lamina), which contains a multilayer glial network, photoreceptor axons release histamine to hyperpolarize secondary sensory neurons. Subsequently, the released histamine is taken up by perisynaptic epithelial glia and converted into inactive carcinine through conjugation with β-alanine for transport. In contrast to a previous assumption that epithelial glia deliver carcinine directly back to photoreceptor axons for histamine regeneration within the lamina, we detected both carcinine and β-alanine in the fly retina, where they are found in photoreceptor cell bodies and surrounding pigment glial cells. Downregulating Inx2 gap junctions within the laminar glial network causes β-alanine accumulation in retinal pigment cells and impairs carcinine synthesis, leading to reduced histamine levels and photoreceptor synaptic vesicles. Consequently, visual transmission is impaired and the fly is less responsive in a visual alert analysis compared with wild type. Our results suggest that a gap junction-dependent laminar and retinal glial network transports histamine metabolites between perisynaptic glia and photoreceptor cell bodies to mediate a novel, long-distance mechanism of neurotransmitter recycling, highlighting the importance of glial networks in the regulation of neuronal functions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24550312</pmid><doi>10.1073/pnas.1323714111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (7), p.2812-2817 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1323714111 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Artificial satellites axons beta-Alanine - metabolism Biological Sciences Biological Transport - physiology Carnosine - analogs & derivatives Carnosine - metabolism Cells Connexins - genetics Drosophila Drosophila melanogaster - physiology Drosophila Proteins - genetics Electroretinography Eyes & eyesight Fluoroimmunoassay gap junctions Gene Knockdown Techniques glutamic acid Histamine Histamine - metabolism Histamines Insects mammals Metabolites Microscopy, Confocal Microscopy, Electron, Transmission Neuroglia Neuroglia - physiology Neurons Neurotransmitter Agents - metabolism Neurotransmitters Photoreceptor Cells, Invertebrate - physiology Photoreceptors Recycling Retina Retina - metabolism Retinal pigments RNA Interference sensory neurons Synaptic Transmission - physiology synaptic vesicles Vision, Ocular - physiology |
title | Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-distance%20mechanism%20of%20neurotransmitter%20recycling%20mediated%20by%20glial%20network%20facilitates%20visual%20function%20in%20Drosophila&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chaturvedi,%20Ratna&rft.date=2014-02-18&rft.volume=111&rft.issue=7&rft.spage=2812&rft.epage=2817&rft.pages=2812-2817&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1323714111&rft_dat=%3Cjstor_cross%3E23768969%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1501609363&rft_id=info:pmid/24550312&rft_jstor_id=23768969&rfr_iscdi=true |