Heat shock protein 90 controls HIV-1 reactivation from latency

Latency allows HIV-1 to persist in long-lived cellular reservoirs, preventing virus eradication. We have previously shown that the heat shock protein 90 (Hsp90) is required for HIV-1 gene expression and mediates greater HIV-1 replication in conditions of hyperthermia. Here we report that specific in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-04, Vol.111 (15), p.E1528-E1537
Hauptverfasser: Anderson, Ian, Low, Jun Siong, Weston, Stuart, Weinberger, Michael, Zhyvoloup, Alexander, Labokha, Aksana A, Corazza, Gianmarco, Kitson, Russell A, Moody, Christopher J, Marcello, Alessandro, Fassati, Ariberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E1537
container_issue 15
container_start_page E1528
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Anderson, Ian
Low, Jun Siong
Weston, Stuart
Weinberger, Michael
Zhyvoloup, Alexander
Labokha, Aksana A
Corazza, Gianmarco
Kitson, Russell A
Moody, Christopher J
Marcello, Alessandro
Fassati, Ariberto
description Latency allows HIV-1 to persist in long-lived cellular reservoirs, preventing virus eradication. We have previously shown that the heat shock protein 90 (Hsp90) is required for HIV-1 gene expression and mediates greater HIV-1 replication in conditions of hyperthermia. Here we report that specific inhibitors of Hsp90 such as 17-(N-allylamino)-17-demethoxygeldanamycin and AUY922 prevent HIV-1 reactivation in CD4+ T cells. A single modification at position 19 in the Hsp90 inhibitors abolished this activity, supporting the specificity of the target. We tested the impact of Hsp90 on known pathways involved in HIV-1 reactivation from latency; they include protein kinase Cs(PKCs), mitogen activated protein kinase/extracellular signal regulated kinase/positive transcriptional elongation factor-b and NF-κB. We found that Hsp90 was required downstream of PKCs and was not required for mitogen activated protein kinase activation. Inhibition of Hsp90 reduced degradation of IkBα and blocked nuclear translocation of transcription factor p65/p50, suppressing the NF-κB pathway. Coimmunoprecipitation experiments showed that Hsp90 interacts with inhibitor of nuclear factor kappa-B kinase (IKK) together with cochaperone Cdc37, which is critical for the activity of several kinases. Targeting of Hsp90 by AUY922 dissociated Cdc37 from the complex. Therefore, Hsp90 controls HIV-1 reactivation from latency by keeping the IKK complex functional and thus connects T-cell activation with HIV-1 replication. AUY922 is in phase II clinical trial and, in combination with a PKC-ϑ inhibitor in phase II clinical trial, almost completely suppressed HIV-1 reactivation at 15 nM with no cytotoxicity. Selective targeting of the Hsp90/Cdc37 interaction may provide a powerful approach to suppress HIV-1 reactivation from latency.
doi_str_mv 10.1073/pnas.1320178111
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1320178111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1517398164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-a09ec75584cdf3e7d8e52e29c9bcb9909eb08f0b93958a3f842b0ee27b9fca7e3</originalsourceid><addsrcrecordid>eNqFkb1vFDEQxS0EIkegpgNLNDSbzNi7_mgiRVHgIkWigNBaXt9ssmFvfdh7kfLf49Udx0eTysX85s3ze4y9RThB0PJ0M_p8glIAaoOIz9gCwWKlagvP2QJA6MrUoj5ir3K-BwDbGHjJjkStQWltFuxsSX7i-S6GH3yT4kT9yC3wEMcpxSHz5dX3CnkiH6b-wU99HHmX4poPfqIxPL5mLzo_ZHqzf4_ZzafLbxfL6vrL56uL8-sqKC2myoOloJvG1GHVSdIrQ40gYYNtQ2ttmbZgOmitLAa97IrnFoiEbm0XvCZ5zM52upttu6ZVoGLPD26T-rVPjy763v07Gfs7dxsfnLRWqKYuAh_3Ain-3FKe3LrPgYbBjxS32aEBibUswT2NKq2kAoPwNNqgltagmg18-A-9j9s0ltAKJQBQ1s0seLqjQoo5J-oOX0Rwc-Nubtz9abxsvPs7mQP_u-IC8D0wbx7kEMtdd1luz8j7HdL56Pxt6rO7-VouqGKruNIgfwGlrblA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520013450</pqid></control><display><type>article</type><title>Heat shock protein 90 controls HIV-1 reactivation from latency</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Anderson, Ian ; Low, Jun Siong ; Weston, Stuart ; Weinberger, Michael ; Zhyvoloup, Alexander ; Labokha, Aksana A ; Corazza, Gianmarco ; Kitson, Russell A ; Moody, Christopher J ; Marcello, Alessandro ; Fassati, Ariberto</creator><creatorcontrib>Anderson, Ian ; Low, Jun Siong ; Weston, Stuart ; Weinberger, Michael ; Zhyvoloup, Alexander ; Labokha, Aksana A ; Corazza, Gianmarco ; Kitson, Russell A ; Moody, Christopher J ; Marcello, Alessandro ; Fassati, Ariberto</creatorcontrib><description>Latency allows HIV-1 to persist in long-lived cellular reservoirs, preventing virus eradication. We have previously shown that the heat shock protein 90 (Hsp90) is required for HIV-1 gene expression and mediates greater HIV-1 replication in conditions of hyperthermia. Here we report that specific inhibitors of Hsp90 such as 17-(N-allylamino)-17-demethoxygeldanamycin and AUY922 prevent HIV-1 reactivation in CD4+ T cells. A single modification at position 19 in the Hsp90 inhibitors abolished this activity, supporting the specificity of the target. We tested the impact of Hsp90 on known pathways involved in HIV-1 reactivation from latency; they include protein kinase Cs(PKCs), mitogen activated protein kinase/extracellular signal regulated kinase/positive transcriptional elongation factor-b and NF-κB. We found that Hsp90 was required downstream of PKCs and was not required for mitogen activated protein kinase activation. Inhibition of Hsp90 reduced degradation of IkBα and blocked nuclear translocation of transcription factor p65/p50, suppressing the NF-κB pathway. Coimmunoprecipitation experiments showed that Hsp90 interacts with inhibitor of nuclear factor kappa-B kinase (IKK) together with cochaperone Cdc37, which is critical for the activity of several kinases. Targeting of Hsp90 by AUY922 dissociated Cdc37 from the complex. Therefore, Hsp90 controls HIV-1 reactivation from latency by keeping the IKK complex functional and thus connects T-cell activation with HIV-1 replication. AUY922 is in phase II clinical trial and, in combination with a PKC-ϑ inhibitor in phase II clinical trial, almost completely suppressed HIV-1 reactivation at 15 nM with no cytotoxicity. Selective targeting of the Hsp90/Cdc37 interaction may provide a powerful approach to suppress HIV-1 reactivation from latency.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1320178111</identifier><identifier>PMID: 24706778</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Blotting, Western ; CD4-positive T-lymphocytes ; Cell Line ; clinical trials ; cytotoxicity ; Fever ; Gene expression ; Heat shock proteins ; HIV ; HIV-1 - metabolism ; HIV-1 - physiology ; HSP90 Heat-Shock Proteins - metabolism ; Human immunodeficiency virus ; Human immunodeficiency virus 1 ; Humans ; Immunoprecipitation ; Kinases ; Microscopy, Fluorescence ; NF-kappa B - metabolism ; PNAS Plus ; protein kinase C ; Signal transduction ; Signal Transduction - genetics ; Signal Transduction - physiology ; T cell receptors ; transcription (genetics) ; transcription factor NF-kappa B ; Virus Activation - physiology ; Virus Latency - physiology ; virus replication ; viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (15), p.E1528-E1537</ispartof><rights>Copyright National Academy of Sciences Apr 15, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c672t-a09ec75584cdf3e7d8e52e29c9bcb9909eb08f0b93958a3f842b0ee27b9fca7e3</citedby><cites>FETCH-LOGICAL-c672t-a09ec75584cdf3e7d8e52e29c9bcb9909eb08f0b93958a3f842b0ee27b9fca7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/15.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992654/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992654/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24706778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Ian</creatorcontrib><creatorcontrib>Low, Jun Siong</creatorcontrib><creatorcontrib>Weston, Stuart</creatorcontrib><creatorcontrib>Weinberger, Michael</creatorcontrib><creatorcontrib>Zhyvoloup, Alexander</creatorcontrib><creatorcontrib>Labokha, Aksana A</creatorcontrib><creatorcontrib>Corazza, Gianmarco</creatorcontrib><creatorcontrib>Kitson, Russell A</creatorcontrib><creatorcontrib>Moody, Christopher J</creatorcontrib><creatorcontrib>Marcello, Alessandro</creatorcontrib><creatorcontrib>Fassati, Ariberto</creatorcontrib><title>Heat shock protein 90 controls HIV-1 reactivation from latency</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Latency allows HIV-1 to persist in long-lived cellular reservoirs, preventing virus eradication. We have previously shown that the heat shock protein 90 (Hsp90) is required for HIV-1 gene expression and mediates greater HIV-1 replication in conditions of hyperthermia. Here we report that specific inhibitors of Hsp90 such as 17-(N-allylamino)-17-demethoxygeldanamycin and AUY922 prevent HIV-1 reactivation in CD4+ T cells. A single modification at position 19 in the Hsp90 inhibitors abolished this activity, supporting the specificity of the target. We tested the impact of Hsp90 on known pathways involved in HIV-1 reactivation from latency; they include protein kinase Cs(PKCs), mitogen activated protein kinase/extracellular signal regulated kinase/positive transcriptional elongation factor-b and NF-κB. We found that Hsp90 was required downstream of PKCs and was not required for mitogen activated protein kinase activation. Inhibition of Hsp90 reduced degradation of IkBα and blocked nuclear translocation of transcription factor p65/p50, suppressing the NF-κB pathway. Coimmunoprecipitation experiments showed that Hsp90 interacts with inhibitor of nuclear factor kappa-B kinase (IKK) together with cochaperone Cdc37, which is critical for the activity of several kinases. Targeting of Hsp90 by AUY922 dissociated Cdc37 from the complex. Therefore, Hsp90 controls HIV-1 reactivation from latency by keeping the IKK complex functional and thus connects T-cell activation with HIV-1 replication. AUY922 is in phase II clinical trial and, in combination with a PKC-ϑ inhibitor in phase II clinical trial, almost completely suppressed HIV-1 reactivation at 15 nM with no cytotoxicity. Selective targeting of the Hsp90/Cdc37 interaction may provide a powerful approach to suppress HIV-1 reactivation from latency.</description><subject>Biological Sciences</subject><subject>Blotting, Western</subject><subject>CD4-positive T-lymphocytes</subject><subject>Cell Line</subject><subject>clinical trials</subject><subject>cytotoxicity</subject><subject>Fever</subject><subject>Gene expression</subject><subject>Heat shock proteins</subject><subject>HIV</subject><subject>HIV-1 - metabolism</subject><subject>HIV-1 - physiology</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Human immunodeficiency virus</subject><subject>Human immunodeficiency virus 1</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Kinases</subject><subject>Microscopy, Fluorescence</subject><subject>NF-kappa B - metabolism</subject><subject>PNAS Plus</subject><subject>protein kinase C</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>T cell receptors</subject><subject>transcription (genetics)</subject><subject>transcription factor NF-kappa B</subject><subject>Virus Activation - physiology</subject><subject>Virus Latency - physiology</subject><subject>virus replication</subject><subject>viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1vFDEQxS0EIkegpgNLNDSbzNi7_mgiRVHgIkWigNBaXt9ssmFvfdh7kfLf49Udx0eTysX85s3ze4y9RThB0PJ0M_p8glIAaoOIz9gCwWKlagvP2QJA6MrUoj5ir3K-BwDbGHjJjkStQWltFuxsSX7i-S6GH3yT4kT9yC3wEMcpxSHz5dX3CnkiH6b-wU99HHmX4poPfqIxPL5mLzo_ZHqzf4_ZzafLbxfL6vrL56uL8-sqKC2myoOloJvG1GHVSdIrQ40gYYNtQ2ttmbZgOmitLAa97IrnFoiEbm0XvCZ5zM52upttu6ZVoGLPD26T-rVPjy763v07Gfs7dxsfnLRWqKYuAh_3Ain-3FKe3LrPgYbBjxS32aEBibUswT2NKq2kAoPwNNqgltagmg18-A-9j9s0ltAKJQBQ1s0seLqjQoo5J-oOX0Rwc-Nubtz9abxsvPs7mQP_u-IC8D0wbx7kEMtdd1luz8j7HdL56Pxt6rO7-VouqGKruNIgfwGlrblA</recordid><startdate>20140415</startdate><enddate>20140415</enddate><creator>Anderson, Ian</creator><creator>Low, Jun Siong</creator><creator>Weston, Stuart</creator><creator>Weinberger, Michael</creator><creator>Zhyvoloup, Alexander</creator><creator>Labokha, Aksana A</creator><creator>Corazza, Gianmarco</creator><creator>Kitson, Russell A</creator><creator>Moody, Christopher J</creator><creator>Marcello, Alessandro</creator><creator>Fassati, Ariberto</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140415</creationdate><title>Heat shock protein 90 controls HIV-1 reactivation from latency</title><author>Anderson, Ian ; Low, Jun Siong ; Weston, Stuart ; Weinberger, Michael ; Zhyvoloup, Alexander ; Labokha, Aksana A ; Corazza, Gianmarco ; Kitson, Russell A ; Moody, Christopher J ; Marcello, Alessandro ; Fassati, Ariberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-a09ec75584cdf3e7d8e52e29c9bcb9909eb08f0b93958a3f842b0ee27b9fca7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological Sciences</topic><topic>Blotting, Western</topic><topic>CD4-positive T-lymphocytes</topic><topic>Cell Line</topic><topic>clinical trials</topic><topic>cytotoxicity</topic><topic>Fever</topic><topic>Gene expression</topic><topic>Heat shock proteins</topic><topic>HIV</topic><topic>HIV-1 - metabolism</topic><topic>HIV-1 - physiology</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Human immunodeficiency virus</topic><topic>Human immunodeficiency virus 1</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Kinases</topic><topic>Microscopy, Fluorescence</topic><topic>NF-kappa B - metabolism</topic><topic>PNAS Plus</topic><topic>protein kinase C</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>T cell receptors</topic><topic>transcription (genetics)</topic><topic>transcription factor NF-kappa B</topic><topic>Virus Activation - physiology</topic><topic>Virus Latency - physiology</topic><topic>virus replication</topic><topic>viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Ian</creatorcontrib><creatorcontrib>Low, Jun Siong</creatorcontrib><creatorcontrib>Weston, Stuart</creatorcontrib><creatorcontrib>Weinberger, Michael</creatorcontrib><creatorcontrib>Zhyvoloup, Alexander</creatorcontrib><creatorcontrib>Labokha, Aksana A</creatorcontrib><creatorcontrib>Corazza, Gianmarco</creatorcontrib><creatorcontrib>Kitson, Russell A</creatorcontrib><creatorcontrib>Moody, Christopher J</creatorcontrib><creatorcontrib>Marcello, Alessandro</creatorcontrib><creatorcontrib>Fassati, Ariberto</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Ian</au><au>Low, Jun Siong</au><au>Weston, Stuart</au><au>Weinberger, Michael</au><au>Zhyvoloup, Alexander</au><au>Labokha, Aksana A</au><au>Corazza, Gianmarco</au><au>Kitson, Russell A</au><au>Moody, Christopher J</au><au>Marcello, Alessandro</au><au>Fassati, Ariberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat shock protein 90 controls HIV-1 reactivation from latency</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-04-15</date><risdate>2014</risdate><volume>111</volume><issue>15</issue><spage>E1528</spage><epage>E1537</epage><pages>E1528-E1537</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Latency allows HIV-1 to persist in long-lived cellular reservoirs, preventing virus eradication. We have previously shown that the heat shock protein 90 (Hsp90) is required for HIV-1 gene expression and mediates greater HIV-1 replication in conditions of hyperthermia. Here we report that specific inhibitors of Hsp90 such as 17-(N-allylamino)-17-demethoxygeldanamycin and AUY922 prevent HIV-1 reactivation in CD4+ T cells. A single modification at position 19 in the Hsp90 inhibitors abolished this activity, supporting the specificity of the target. We tested the impact of Hsp90 on known pathways involved in HIV-1 reactivation from latency; they include protein kinase Cs(PKCs), mitogen activated protein kinase/extracellular signal regulated kinase/positive transcriptional elongation factor-b and NF-κB. We found that Hsp90 was required downstream of PKCs and was not required for mitogen activated protein kinase activation. Inhibition of Hsp90 reduced degradation of IkBα and blocked nuclear translocation of transcription factor p65/p50, suppressing the NF-κB pathway. Coimmunoprecipitation experiments showed that Hsp90 interacts with inhibitor of nuclear factor kappa-B kinase (IKK) together with cochaperone Cdc37, which is critical for the activity of several kinases. Targeting of Hsp90 by AUY922 dissociated Cdc37 from the complex. Therefore, Hsp90 controls HIV-1 reactivation from latency by keeping the IKK complex functional and thus connects T-cell activation with HIV-1 replication. AUY922 is in phase II clinical trial and, in combination with a PKC-ϑ inhibitor in phase II clinical trial, almost completely suppressed HIV-1 reactivation at 15 nM with no cytotoxicity. Selective targeting of the Hsp90/Cdc37 interaction may provide a powerful approach to suppress HIV-1 reactivation from latency.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24706778</pmid><doi>10.1073/pnas.1320178111</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (15), p.E1528-E1537
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1320178111
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Blotting, Western
CD4-positive T-lymphocytes
Cell Line
clinical trials
cytotoxicity
Fever
Gene expression
Heat shock proteins
HIV
HIV-1 - metabolism
HIV-1 - physiology
HSP90 Heat-Shock Proteins - metabolism
Human immunodeficiency virus
Human immunodeficiency virus 1
Humans
Immunoprecipitation
Kinases
Microscopy, Fluorescence
NF-kappa B - metabolism
PNAS Plus
protein kinase C
Signal transduction
Signal Transduction - genetics
Signal Transduction - physiology
T cell receptors
transcription (genetics)
transcription factor NF-kappa B
Virus Activation - physiology
Virus Latency - physiology
virus replication
viruses
title Heat shock protein 90 controls HIV-1 reactivation from latency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A35%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20shock%20protein%2090%20controls%20HIV-1%20reactivation%20from%20latency&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Anderson,%20Ian&rft.date=2014-04-15&rft.volume=111&rft.issue=15&rft.spage=E1528&rft.epage=E1537&rft.pages=E1528-E1537&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1320178111&rft_dat=%3Cproquest_cross%3E1517398164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520013450&rft_id=info:pmid/24706778&rfr_iscdi=true