Evidence that protons act as neurotransmitters at vestibular hair cell–calyx afferent synapses

Present data support the conclusion that protons serve as an important neurotransmitter to convey excitatory stimuli from inner ear type I vestibular hair cells to postsynaptic calyx nerve terminals. Time-resolved pH imaging revealed stimulus-evoked extrusion of protons from hair cells and a subsequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-04, Vol.111 (14), p.5421-5426
Hauptverfasser: Highstein, Stephen M., Holstein, Gay R., Mann, Mary Anne, Rabbitt, Richard D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5426
container_issue 14
container_start_page 5421
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Highstein, Stephen M.
Holstein, Gay R.
Mann, Mary Anne
Rabbitt, Richard D.
description Present data support the conclusion that protons serve as an important neurotransmitter to convey excitatory stimuli from inner ear type I vestibular hair cells to postsynaptic calyx nerve terminals. Time-resolved pH imaging revealed stimulus-evoked extrusion of protons from hair cells and a subsequent buildup of [ H ⁺] within the confined chalice-shaped synaptic cleft (ΔpH ∼ −0.2). Whole-cell voltage-clamp recordings revealed a concomitant nonquantal excitatory postsynaptic current in the calyx terminal that was causally modulated by cleft acidification. The time course of [ H ⁺] buildup limits the speed of this intercellular signaling mechanism, but for tonic signals such as gravity, protonergic transmission offers a significant metabolic advantage over quantal excitatory postsynaptic currents—an advantage that may have driven the proliferation of postsynaptic calyx terminals in the inner ear vestibular organs of contemporary amniotes.
doi_str_mv 10.1073/pnas.1319561111
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1319561111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23771425</jstor_id><sourcerecordid>23771425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-c269ee2719a86af77543362e7a2519264bb1270d10bbd287571516b164ee602e3</originalsourceid><addsrcrecordid>eNqFkU2P0zAQhi0EYkvhzAmItBcu2Z3xty9IaLV8SCtxgD0bJ3W2qdKk2E5Fb_yH_Yf8Ehy1tMAFXyx5nnk0r4eQ5wgXCIpdbnoXL5ChERLzeUBmCAZLyQ08JDMAqkrNKT8jT2JcAYARGh6TM8oVSC3pjHy93rYL39e-SEuXik0Y0tDHwtWpcLHo_Zgfguvjuk3Jh1xIxdbH1FZj50KxdG0oat91P3_c167bfS9c0_jg-1TEXe820cen5FHjuuifHe45uX13_eXqQ3nz6f3Hq7c3ZS0oT2VNpfGeKjROS9coJThjknrlqEBDJa8qpAoWCFW1oFoJhQJlhZJ7L4F6Nidv9t7NWK39os4zBNfZTWjXLuzs4Fr7d6Vvl_Zu2FpmtESjs-D1QRCGb2POaNdtnLK53g9jtCiVZBI0iP-jAjlnXOYIc3L-D7oaxtDnn5gojRSMwUxd7qk6DDEG3xznRrDTou20aHtadO54-WfcI_97sxl4dQCmzqMO0SK3gtNJ8WJPrGIawsnAlEJOxcnQuMG6u9BGe_uZAkoAzOm4Zr8AWOzCXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518120991</pqid></control><display><type>article</type><title>Evidence that protons act as neurotransmitters at vestibular hair cell–calyx afferent synapses</title><source>MEDLINE</source><source>NCBI_PubMed Central(免费)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Highstein, Stephen M. ; Holstein, Gay R. ; Mann, Mary Anne ; Rabbitt, Richard D.</creator><creatorcontrib>Highstein, Stephen M. ; Holstein, Gay R. ; Mann, Mary Anne ; Rabbitt, Richard D.</creatorcontrib><description>Present data support the conclusion that protons serve as an important neurotransmitter to convey excitatory stimuli from inner ear type I vestibular hair cells to postsynaptic calyx nerve terminals. Time-resolved pH imaging revealed stimulus-evoked extrusion of protons from hair cells and a subsequent buildup of [ H ⁺] within the confined chalice-shaped synaptic cleft (ΔpH ∼ −0.2). Whole-cell voltage-clamp recordings revealed a concomitant nonquantal excitatory postsynaptic current in the calyx terminal that was causally modulated by cleft acidification. The time course of [ H ⁺] buildup limits the speed of this intercellular signaling mechanism, but for tonic signals such as gravity, protonergic transmission offers a significant metabolic advantage over quantal excitatory postsynaptic currents—an advantage that may have driven the proliferation of postsynaptic calyx terminals in the inner ear vestibular organs of contemporary amniotes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1319561111</identifier><identifier>PMID: 24706862</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acidification ; Amniota ; Biological Sciences ; Calyx ; Cells ; Hair ; Hair cells ; Hair Cells, Vestibular - metabolism ; Imaging ; Kinetics ; Neurotransmitter Agents - metabolism ; Neurotransmitters ; Protons ; Signal transduction ; Synapses ; Time constants</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (14), p.5421-5426</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 8, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-c269ee2719a86af77543362e7a2519264bb1270d10bbd287571516b164ee602e3</citedby><cites>FETCH-LOGICAL-c524t-c269ee2719a86af77543362e7a2519264bb1270d10bbd287571516b164ee602e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/14.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23771425$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23771425$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24706862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Highstein, Stephen M.</creatorcontrib><creatorcontrib>Holstein, Gay R.</creatorcontrib><creatorcontrib>Mann, Mary Anne</creatorcontrib><creatorcontrib>Rabbitt, Richard D.</creatorcontrib><title>Evidence that protons act as neurotransmitters at vestibular hair cell–calyx afferent synapses</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Present data support the conclusion that protons serve as an important neurotransmitter to convey excitatory stimuli from inner ear type I vestibular hair cells to postsynaptic calyx nerve terminals. Time-resolved pH imaging revealed stimulus-evoked extrusion of protons from hair cells and a subsequent buildup of [ H ⁺] within the confined chalice-shaped synaptic cleft (ΔpH ∼ −0.2). Whole-cell voltage-clamp recordings revealed a concomitant nonquantal excitatory postsynaptic current in the calyx terminal that was causally modulated by cleft acidification. The time course of [ H ⁺] buildup limits the speed of this intercellular signaling mechanism, but for tonic signals such as gravity, protonergic transmission offers a significant metabolic advantage over quantal excitatory postsynaptic currents—an advantage that may have driven the proliferation of postsynaptic calyx terminals in the inner ear vestibular organs of contemporary amniotes.</description><subject>Acidification</subject><subject>Amniota</subject><subject>Biological Sciences</subject><subject>Calyx</subject><subject>Cells</subject><subject>Hair</subject><subject>Hair cells</subject><subject>Hair Cells, Vestibular - metabolism</subject><subject>Imaging</subject><subject>Kinetics</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Neurotransmitters</subject><subject>Protons</subject><subject>Signal transduction</subject><subject>Synapses</subject><subject>Time constants</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2P0zAQhi0EYkvhzAmItBcu2Z3xty9IaLV8SCtxgD0bJ3W2qdKk2E5Fb_yH_Yf8Ehy1tMAFXyx5nnk0r4eQ5wgXCIpdbnoXL5ChERLzeUBmCAZLyQ08JDMAqkrNKT8jT2JcAYARGh6TM8oVSC3pjHy93rYL39e-SEuXik0Y0tDHwtWpcLHo_Zgfguvjuk3Jh1xIxdbH1FZj50KxdG0oat91P3_c167bfS9c0_jg-1TEXe820cen5FHjuuifHe45uX13_eXqQ3nz6f3Hq7c3ZS0oT2VNpfGeKjROS9coJThjknrlqEBDJa8qpAoWCFW1oFoJhQJlhZJ7L4F6Nidv9t7NWK39os4zBNfZTWjXLuzs4Fr7d6Vvl_Zu2FpmtESjs-D1QRCGb2POaNdtnLK53g9jtCiVZBI0iP-jAjlnXOYIc3L-D7oaxtDnn5gojRSMwUxd7qk6DDEG3xznRrDTou20aHtadO54-WfcI_97sxl4dQCmzqMO0SK3gtNJ8WJPrGIawsnAlEJOxcnQuMG6u9BGe_uZAkoAzOm4Zr8AWOzCXg</recordid><startdate>20140408</startdate><enddate>20140408</enddate><creator>Highstein, Stephen M.</creator><creator>Holstein, Gay R.</creator><creator>Mann, Mary Anne</creator><creator>Rabbitt, Richard D.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140408</creationdate><title>Evidence that protons act as neurotransmitters at vestibular hair cell–calyx afferent synapses</title><author>Highstein, Stephen M. ; Holstein, Gay R. ; Mann, Mary Anne ; Rabbitt, Richard D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-c269ee2719a86af77543362e7a2519264bb1270d10bbd287571516b164ee602e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acidification</topic><topic>Amniota</topic><topic>Biological Sciences</topic><topic>Calyx</topic><topic>Cells</topic><topic>Hair</topic><topic>Hair cells</topic><topic>Hair Cells, Vestibular - metabolism</topic><topic>Imaging</topic><topic>Kinetics</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Neurotransmitters</topic><topic>Protons</topic><topic>Signal transduction</topic><topic>Synapses</topic><topic>Time constants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Highstein, Stephen M.</creatorcontrib><creatorcontrib>Holstein, Gay R.</creatorcontrib><creatorcontrib>Mann, Mary Anne</creatorcontrib><creatorcontrib>Rabbitt, Richard D.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Highstein, Stephen M.</au><au>Holstein, Gay R.</au><au>Mann, Mary Anne</au><au>Rabbitt, Richard D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence that protons act as neurotransmitters at vestibular hair cell–calyx afferent synapses</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-04-08</date><risdate>2014</risdate><volume>111</volume><issue>14</issue><spage>5421</spage><epage>5426</epage><pages>5421-5426</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Present data support the conclusion that protons serve as an important neurotransmitter to convey excitatory stimuli from inner ear type I vestibular hair cells to postsynaptic calyx nerve terminals. Time-resolved pH imaging revealed stimulus-evoked extrusion of protons from hair cells and a subsequent buildup of [ H ⁺] within the confined chalice-shaped synaptic cleft (ΔpH ∼ −0.2). Whole-cell voltage-clamp recordings revealed a concomitant nonquantal excitatory postsynaptic current in the calyx terminal that was causally modulated by cleft acidification. The time course of [ H ⁺] buildup limits the speed of this intercellular signaling mechanism, but for tonic signals such as gravity, protonergic transmission offers a significant metabolic advantage over quantal excitatory postsynaptic currents—an advantage that may have driven the proliferation of postsynaptic calyx terminals in the inner ear vestibular organs of contemporary amniotes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24706862</pmid><doi>10.1073/pnas.1319561111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (14), p.5421-5426
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1319561111
source MEDLINE; NCBI_PubMed Central(免费); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Acidification
Amniota
Biological Sciences
Calyx
Cells
Hair
Hair cells
Hair Cells, Vestibular - metabolism
Imaging
Kinetics
Neurotransmitter Agents - metabolism
Neurotransmitters
Protons
Signal transduction
Synapses
Time constants
title Evidence that protons act as neurotransmitters at vestibular hair cell–calyx afferent synapses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20that%20protons%20act%20as%20neurotransmitters%20at%20vestibular%20hair%20cell%E2%80%93calyx%20afferent%20synapses&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Highstein,%20Stephen%20M.&rft.date=2014-04-08&rft.volume=111&rft.issue=14&rft.spage=5421&rft.epage=5426&rft.pages=5421-5426&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1319561111&rft_dat=%3Cjstor_cross%3E23771425%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518120991&rft_id=info:pmid/24706862&rft_jstor_id=23771425&rfr_iscdi=true