Engineered temperature compensation in a synthetic genetic clock

Synthetic biology promises to revolutionize biotechnology by providing the means to reengineer and reprogram cellular regulatory mechanisms. However, synthetic gene circuits are often unreliable, as changes to environmental conditions can fundamentally alter a circuit’s behavior. One way to improve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-01, Vol.111 (3), p.972-977
Hauptverfasser: Hussain, Faiza, Gupta, Chinmaya, Hirning, Andrew J., Ott, William, Matthews, Kathleen S., Josić, Krešimir, Bennett, Matthew R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 977
container_issue 3
container_start_page 972
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Hussain, Faiza
Gupta, Chinmaya
Hirning, Andrew J.
Ott, William
Matthews, Kathleen S.
Josić, Krešimir
Bennett, Matthew R.
description Synthetic biology promises to revolutionize biotechnology by providing the means to reengineer and reprogram cellular regulatory mechanisms. However, synthetic gene circuits are often unreliable, as changes to environmental conditions can fundamentally alter a circuit’s behavior. One way to improve robustness is to use intrinsic properties of transcription factors within the circuit to buffer against intra- and extracellular variability. Here, we describe the design and construction of a synthetic gene oscillator in Escherichia coli that maintains a constant period over a range of temperatures. We started with a previously described synthetic dual-feedback oscillator with a temperature-dependent period. Computational modeling predicted and subsequent experiments confirmed that a single amino acid mutation to the core transcriptional repressor of the circuit results in temperature compensation. Specifically, we used a temperature-sensitive lactose repressor mutant that loses the ability to repress its target promoter at high temperatures. In the oscillator, this thermoinduction of the repressor leads to an increase in period at high temperatures that compensates for the decrease in period due to Arrhenius scaling of the reaction rates. The result is a transcriptional oscillator with a nearly constant period of 48 min for temperatures ranging from 30 °C to 41 °C. In contrast, in the absence of the mutation the period of the oscillator drops from 60 to 30 min over the same temperature range. This work demonstrates that synthetic gene circuits can be engineered to be robust to extracellular conditions through protein-level modifications.
doi_str_mv 10.1073/pnas.1316298111
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1316298111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23770413</jstor_id><sourcerecordid>23770413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621t-f1a51cc6c3aa08b313d895cf2c100c8f3a3289462039b2c3658a523e681af5f03</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxVcIREPhzAlYiQuXbWc8_rxUoKp8SJU4QM-W43jTDYkd7F2k_vfsNiEBLj3NSPObp3nzquolwhmCovNtdOUMCSUzGhEfVTMEg43kBh5XMwCmGs0ZP6melbICACM0PK1OGKepM7Pq_VVcdjGEHBZ1HzbbkF0_5FD7NPaxuL5Lse5i7epyF_vb0He-XoZ4X_06-R_PqyetW5fwYl9Pq5uPV98vPzfXXz99ufxw3XjJsG9adAK9l56cAz0npIU2wrfMI4DXLTli2nDJgMyceZJCO8EoSI2uFS3QaXWx090O801Y-BD77NZ2m7uNy3c2uc7-O4ndrV2mX5YMEBM4CrzbC-T0cwilt5uu-LBeuxjSUCxqGK8i1OxhVIAgzoWih1FumFRS8Un17X_oKg05jk-7p5hipKYzz3eUz6mUHNqDRQQ7ZW6nzO0x83Hj9d-fOfB_Qh6BV3tg2jzIIVqyRrHjfFX6lI_7pBRwnDy-2c1bl6xb5q7Ym28MUAIgjfY4_QbpkMLy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492272371</pqid></control><display><type>article</type><title>Engineered temperature compensation in a synthetic genetic clock</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hussain, Faiza ; Gupta, Chinmaya ; Hirning, Andrew J. ; Ott, William ; Matthews, Kathleen S. ; Josić, Krešimir ; Bennett, Matthew R.</creator><creatorcontrib>Hussain, Faiza ; Gupta, Chinmaya ; Hirning, Andrew J. ; Ott, William ; Matthews, Kathleen S. ; Josić, Krešimir ; Bennett, Matthew R.</creatorcontrib><description>Synthetic biology promises to revolutionize biotechnology by providing the means to reengineer and reprogram cellular regulatory mechanisms. However, synthetic gene circuits are often unreliable, as changes to environmental conditions can fundamentally alter a circuit’s behavior. One way to improve robustness is to use intrinsic properties of transcription factors within the circuit to buffer against intra- and extracellular variability. Here, we describe the design and construction of a synthetic gene oscillator in Escherichia coli that maintains a constant period over a range of temperatures. We started with a previously described synthetic dual-feedback oscillator with a temperature-dependent period. Computational modeling predicted and subsequent experiments confirmed that a single amino acid mutation to the core transcriptional repressor of the circuit results in temperature compensation. Specifically, we used a temperature-sensitive lactose repressor mutant that loses the ability to repress its target promoter at high temperatures. In the oscillator, this thermoinduction of the repressor leads to an increase in period at high temperatures that compensates for the decrease in period due to Arrhenius scaling of the reaction rates. The result is a transcriptional oscillator with a nearly constant period of 48 min for temperatures ranging from 30 °C to 41 °C. In contrast, in the absence of the mutation the period of the oscillator drops from 60 to 30 min over the same temperature range. This work demonstrates that synthetic gene circuits can be engineered to be robust to extracellular conditions through protein-level modifications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1316298111</identifier><identifier>PMID: 24395809</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Biological Sciences ; Biotechnology ; Circadian Clocks ; Computer Simulation ; E coli ; Environmental conditions ; environmental factors ; Escherichia coli ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; Fluorescence ; Gene Regulatory Networks ; Genes ; Genetic engineering ; Isopropyl Thiogalactoside - chemistry ; Lac Repressors - metabolism ; lactose ; Mechanical oscillators ; Microfluidic devices ; Microfluidics ; mutants ; Mutation ; Oscillators ; Plasmids ; Protein Engineering ; Proteins - chemistry ; repressor proteins ; Synthetic Biology ; Synthetic genes ; Temperature ; Temperature distribution ; Thermoregulation ; Time Factors ; transcription (genetics)</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-01, Vol.111 (3), p.972-977</ispartof><rights>copyright © 1993—2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 21, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c621t-f1a51cc6c3aa08b313d895cf2c100c8f3a3289462039b2c3658a523e681af5f03</citedby><cites>FETCH-LOGICAL-c621t-f1a51cc6c3aa08b313d895cf2c100c8f3a3289462039b2c3658a523e681af5f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23770413$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23770413$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24395809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hussain, Faiza</creatorcontrib><creatorcontrib>Gupta, Chinmaya</creatorcontrib><creatorcontrib>Hirning, Andrew J.</creatorcontrib><creatorcontrib>Ott, William</creatorcontrib><creatorcontrib>Matthews, Kathleen S.</creatorcontrib><creatorcontrib>Josić, Krešimir</creatorcontrib><creatorcontrib>Bennett, Matthew R.</creatorcontrib><title>Engineered temperature compensation in a synthetic genetic clock</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Synthetic biology promises to revolutionize biotechnology by providing the means to reengineer and reprogram cellular regulatory mechanisms. However, synthetic gene circuits are often unreliable, as changes to environmental conditions can fundamentally alter a circuit’s behavior. One way to improve robustness is to use intrinsic properties of transcription factors within the circuit to buffer against intra- and extracellular variability. Here, we describe the design and construction of a synthetic gene oscillator in Escherichia coli that maintains a constant period over a range of temperatures. We started with a previously described synthetic dual-feedback oscillator with a temperature-dependent period. Computational modeling predicted and subsequent experiments confirmed that a single amino acid mutation to the core transcriptional repressor of the circuit results in temperature compensation. Specifically, we used a temperature-sensitive lactose repressor mutant that loses the ability to repress its target promoter at high temperatures. In the oscillator, this thermoinduction of the repressor leads to an increase in period at high temperatures that compensates for the decrease in period due to Arrhenius scaling of the reaction rates. The result is a transcriptional oscillator with a nearly constant period of 48 min for temperatures ranging from 30 °C to 41 °C. In contrast, in the absence of the mutation the period of the oscillator drops from 60 to 30 min over the same temperature range. This work demonstrates that synthetic gene circuits can be engineered to be robust to extracellular conditions through protein-level modifications.</description><subject>Amino acids</subject><subject>Biological Sciences</subject><subject>Biotechnology</subject><subject>Circadian Clocks</subject><subject>Computer Simulation</subject><subject>E coli</subject><subject>Environmental conditions</subject><subject>environmental factors</subject><subject>Escherichia coli</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fluorescence</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Isopropyl Thiogalactoside - chemistry</subject><subject>Lac Repressors - metabolism</subject><subject>lactose</subject><subject>Mechanical oscillators</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>mutants</subject><subject>Mutation</subject><subject>Oscillators</subject><subject>Plasmids</subject><subject>Protein Engineering</subject><subject>Proteins - chemistry</subject><subject>repressor proteins</subject><subject>Synthetic Biology</subject><subject>Synthetic genes</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Thermoregulation</subject><subject>Time Factors</subject><subject>transcription (genetics)</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxVcIREPhzAlYiQuXbWc8_rxUoKp8SJU4QM-W43jTDYkd7F2k_vfsNiEBLj3NSPObp3nzquolwhmCovNtdOUMCSUzGhEfVTMEg43kBh5XMwCmGs0ZP6melbICACM0PK1OGKepM7Pq_VVcdjGEHBZ1HzbbkF0_5FD7NPaxuL5Lse5i7epyF_vb0He-XoZ4X_06-R_PqyetW5fwYl9Pq5uPV98vPzfXXz99ufxw3XjJsG9adAK9l56cAz0npIU2wrfMI4DXLTli2nDJgMyceZJCO8EoSI2uFS3QaXWx090O801Y-BD77NZ2m7uNy3c2uc7-O4ndrV2mX5YMEBM4CrzbC-T0cwilt5uu-LBeuxjSUCxqGK8i1OxhVIAgzoWih1FumFRS8Un17X_oKg05jk-7p5hipKYzz3eUz6mUHNqDRQQ7ZW6nzO0x83Hj9d-fOfB_Qh6BV3tg2jzIIVqyRrHjfFX6lI_7pBRwnDy-2c1bl6xb5q7Ym28MUAIgjfY4_QbpkMLy</recordid><startdate>20140121</startdate><enddate>20140121</enddate><creator>Hussain, Faiza</creator><creator>Gupta, Chinmaya</creator><creator>Hirning, Andrew J.</creator><creator>Ott, William</creator><creator>Matthews, Kathleen S.</creator><creator>Josić, Krešimir</creator><creator>Bennett, Matthew R.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140121</creationdate><title>Engineered temperature compensation in a synthetic genetic clock</title><author>Hussain, Faiza ; Gupta, Chinmaya ; Hirning, Andrew J. ; Ott, William ; Matthews, Kathleen S. ; Josić, Krešimir ; Bennett, Matthew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621t-f1a51cc6c3aa08b313d895cf2c100c8f3a3289462039b2c3658a523e681af5f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino acids</topic><topic>Biological Sciences</topic><topic>Biotechnology</topic><topic>Circadian Clocks</topic><topic>Computer Simulation</topic><topic>E coli</topic><topic>Environmental conditions</topic><topic>environmental factors</topic><topic>Escherichia coli</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fluorescence</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Isopropyl Thiogalactoside - chemistry</topic><topic>Lac Repressors - metabolism</topic><topic>lactose</topic><topic>Mechanical oscillators</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>mutants</topic><topic>Mutation</topic><topic>Oscillators</topic><topic>Plasmids</topic><topic>Protein Engineering</topic><topic>Proteins - chemistry</topic><topic>repressor proteins</topic><topic>Synthetic Biology</topic><topic>Synthetic genes</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Thermoregulation</topic><topic>Time Factors</topic><topic>transcription (genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Faiza</creatorcontrib><creatorcontrib>Gupta, Chinmaya</creatorcontrib><creatorcontrib>Hirning, Andrew J.</creatorcontrib><creatorcontrib>Ott, William</creatorcontrib><creatorcontrib>Matthews, Kathleen S.</creatorcontrib><creatorcontrib>Josić, Krešimir</creatorcontrib><creatorcontrib>Bennett, Matthew R.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Faiza</au><au>Gupta, Chinmaya</au><au>Hirning, Andrew J.</au><au>Ott, William</au><au>Matthews, Kathleen S.</au><au>Josić, Krešimir</au><au>Bennett, Matthew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered temperature compensation in a synthetic genetic clock</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-01-21</date><risdate>2014</risdate><volume>111</volume><issue>3</issue><spage>972</spage><epage>977</epage><pages>972-977</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Synthetic biology promises to revolutionize biotechnology by providing the means to reengineer and reprogram cellular regulatory mechanisms. However, synthetic gene circuits are often unreliable, as changes to environmental conditions can fundamentally alter a circuit’s behavior. One way to improve robustness is to use intrinsic properties of transcription factors within the circuit to buffer against intra- and extracellular variability. Here, we describe the design and construction of a synthetic gene oscillator in Escherichia coli that maintains a constant period over a range of temperatures. We started with a previously described synthetic dual-feedback oscillator with a temperature-dependent period. Computational modeling predicted and subsequent experiments confirmed that a single amino acid mutation to the core transcriptional repressor of the circuit results in temperature compensation. Specifically, we used a temperature-sensitive lactose repressor mutant that loses the ability to repress its target promoter at high temperatures. In the oscillator, this thermoinduction of the repressor leads to an increase in period at high temperatures that compensates for the decrease in period due to Arrhenius scaling of the reaction rates. The result is a transcriptional oscillator with a nearly constant period of 48 min for temperatures ranging from 30 °C to 41 °C. In contrast, in the absence of the mutation the period of the oscillator drops from 60 to 30 min over the same temperature range. This work demonstrates that synthetic gene circuits can be engineered to be robust to extracellular conditions through protein-level modifications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24395809</pmid><doi>10.1073/pnas.1316298111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-01, Vol.111 (3), p.972-977
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1316298111
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino acids
Biological Sciences
Biotechnology
Circadian Clocks
Computer Simulation
E coli
Environmental conditions
environmental factors
Escherichia coli
Escherichia coli - metabolism
Escherichia coli Proteins - metabolism
Fluorescence
Gene Regulatory Networks
Genes
Genetic engineering
Isopropyl Thiogalactoside - chemistry
Lac Repressors - metabolism
lactose
Mechanical oscillators
Microfluidic devices
Microfluidics
mutants
Mutation
Oscillators
Plasmids
Protein Engineering
Proteins - chemistry
repressor proteins
Synthetic Biology
Synthetic genes
Temperature
Temperature distribution
Thermoregulation
Time Factors
transcription (genetics)
title Engineered temperature compensation in a synthetic genetic clock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20temperature%20compensation%20in%20a%20synthetic%20genetic%20clock&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hussain,%20Faiza&rft.date=2014-01-21&rft.volume=111&rft.issue=3&rft.spage=972&rft.epage=977&rft.pages=972-977&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1316298111&rft_dat=%3Cjstor_cross%3E23770413%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492272371&rft_id=info:pmid/24395809&rft_jstor_id=23770413&rfr_iscdi=true