Engineered temperature compensation in a synthetic genetic clock
Synthetic biology promises to revolutionize biotechnology by providing the means to reengineer and reprogram cellular regulatory mechanisms. However, synthetic gene circuits are often unreliable, as changes to environmental conditions can fundamentally alter a circuit’s behavior. One way to improve...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-01, Vol.111 (3), p.972-977 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 977 |
---|---|
container_issue | 3 |
container_start_page | 972 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Hussain, Faiza Gupta, Chinmaya Hirning, Andrew J. Ott, William Matthews, Kathleen S. Josić, Krešimir Bennett, Matthew R. |
description | Synthetic biology promises to revolutionize biotechnology by providing the means to reengineer and reprogram cellular regulatory mechanisms. However, synthetic gene circuits are often unreliable, as changes to environmental conditions can fundamentally alter a circuit’s behavior. One way to improve robustness is to use intrinsic properties of transcription factors within the circuit to buffer against intra- and extracellular variability. Here, we describe the design and construction of a synthetic gene oscillator in Escherichia coli that maintains a constant period over a range of temperatures. We started with a previously described synthetic dual-feedback oscillator with a temperature-dependent period. Computational modeling predicted and subsequent experiments confirmed that a single amino acid mutation to the core transcriptional repressor of the circuit results in temperature compensation. Specifically, we used a temperature-sensitive lactose repressor mutant that loses the ability to repress its target promoter at high temperatures. In the oscillator, this thermoinduction of the repressor leads to an increase in period at high temperatures that compensates for the decrease in period due to Arrhenius scaling of the reaction rates. The result is a transcriptional oscillator with a nearly constant period of 48 min for temperatures ranging from 30 °C to 41 °C. In contrast, in the absence of the mutation the period of the oscillator drops from 60 to 30 min over the same temperature range. This work demonstrates that synthetic gene circuits can be engineered to be robust to extracellular conditions through protein-level modifications. |
doi_str_mv | 10.1073/pnas.1316298111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1316298111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23770413</jstor_id><sourcerecordid>23770413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621t-f1a51cc6c3aa08b313d895cf2c100c8f3a3289462039b2c3658a523e681af5f03</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxVcIREPhzAlYiQuXbWc8_rxUoKp8SJU4QM-W43jTDYkd7F2k_vfsNiEBLj3NSPObp3nzquolwhmCovNtdOUMCSUzGhEfVTMEg43kBh5XMwCmGs0ZP6melbICACM0PK1OGKepM7Pq_VVcdjGEHBZ1HzbbkF0_5FD7NPaxuL5Lse5i7epyF_vb0He-XoZ4X_06-R_PqyetW5fwYl9Pq5uPV98vPzfXXz99ufxw3XjJsG9adAK9l56cAz0npIU2wrfMI4DXLTli2nDJgMyceZJCO8EoSI2uFS3QaXWx090O801Y-BD77NZ2m7uNy3c2uc7-O4ndrV2mX5YMEBM4CrzbC-T0cwilt5uu-LBeuxjSUCxqGK8i1OxhVIAgzoWih1FumFRS8Un17X_oKg05jk-7p5hipKYzz3eUz6mUHNqDRQQ7ZW6nzO0x83Hj9d-fOfB_Qh6BV3tg2jzIIVqyRrHjfFX6lI_7pBRwnDy-2c1bl6xb5q7Ym28MUAIgjfY4_QbpkMLy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492272371</pqid></control><display><type>article</type><title>Engineered temperature compensation in a synthetic genetic clock</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hussain, Faiza ; Gupta, Chinmaya ; Hirning, Andrew J. ; Ott, William ; Matthews, Kathleen S. ; Josić, Krešimir ; Bennett, Matthew R.</creator><creatorcontrib>Hussain, Faiza ; Gupta, Chinmaya ; Hirning, Andrew J. ; Ott, William ; Matthews, Kathleen S. ; Josić, Krešimir ; Bennett, Matthew R.</creatorcontrib><description>Synthetic biology promises to revolutionize biotechnology by providing the means to reengineer and reprogram cellular regulatory mechanisms. However, synthetic gene circuits are often unreliable, as changes to environmental conditions can fundamentally alter a circuit’s behavior. One way to improve robustness is to use intrinsic properties of transcription factors within the circuit to buffer against intra- and extracellular variability. Here, we describe the design and construction of a synthetic gene oscillator in Escherichia coli that maintains a constant period over a range of temperatures. We started with a previously described synthetic dual-feedback oscillator with a temperature-dependent period. Computational modeling predicted and subsequent experiments confirmed that a single amino acid mutation to the core transcriptional repressor of the circuit results in temperature compensation. Specifically, we used a temperature-sensitive lactose repressor mutant that loses the ability to repress its target promoter at high temperatures. In the oscillator, this thermoinduction of the repressor leads to an increase in period at high temperatures that compensates for the decrease in period due to Arrhenius scaling of the reaction rates. The result is a transcriptional oscillator with a nearly constant period of 48 min for temperatures ranging from 30 °C to 41 °C. In contrast, in the absence of the mutation the period of the oscillator drops from 60 to 30 min over the same temperature range. This work demonstrates that synthetic gene circuits can be engineered to be robust to extracellular conditions through protein-level modifications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1316298111</identifier><identifier>PMID: 24395809</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Biological Sciences ; Biotechnology ; Circadian Clocks ; Computer Simulation ; E coli ; Environmental conditions ; environmental factors ; Escherichia coli ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; Fluorescence ; Gene Regulatory Networks ; Genes ; Genetic engineering ; Isopropyl Thiogalactoside - chemistry ; Lac Repressors - metabolism ; lactose ; Mechanical oscillators ; Microfluidic devices ; Microfluidics ; mutants ; Mutation ; Oscillators ; Plasmids ; Protein Engineering ; Proteins - chemistry ; repressor proteins ; Synthetic Biology ; Synthetic genes ; Temperature ; Temperature distribution ; Thermoregulation ; Time Factors ; transcription (genetics)</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-01, Vol.111 (3), p.972-977</ispartof><rights>copyright © 1993—2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 21, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c621t-f1a51cc6c3aa08b313d895cf2c100c8f3a3289462039b2c3658a523e681af5f03</citedby><cites>FETCH-LOGICAL-c621t-f1a51cc6c3aa08b313d895cf2c100c8f3a3289462039b2c3658a523e681af5f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23770413$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23770413$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24395809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hussain, Faiza</creatorcontrib><creatorcontrib>Gupta, Chinmaya</creatorcontrib><creatorcontrib>Hirning, Andrew J.</creatorcontrib><creatorcontrib>Ott, William</creatorcontrib><creatorcontrib>Matthews, Kathleen S.</creatorcontrib><creatorcontrib>Josić, Krešimir</creatorcontrib><creatorcontrib>Bennett, Matthew R.</creatorcontrib><title>Engineered temperature compensation in a synthetic genetic clock</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Synthetic biology promises to revolutionize biotechnology by providing the means to reengineer and reprogram cellular regulatory mechanisms. However, synthetic gene circuits are often unreliable, as changes to environmental conditions can fundamentally alter a circuit’s behavior. One way to improve robustness is to use intrinsic properties of transcription factors within the circuit to buffer against intra- and extracellular variability. Here, we describe the design and construction of a synthetic gene oscillator in Escherichia coli that maintains a constant period over a range of temperatures. We started with a previously described synthetic dual-feedback oscillator with a temperature-dependent period. Computational modeling predicted and subsequent experiments confirmed that a single amino acid mutation to the core transcriptional repressor of the circuit results in temperature compensation. Specifically, we used a temperature-sensitive lactose repressor mutant that loses the ability to repress its target promoter at high temperatures. In the oscillator, this thermoinduction of the repressor leads to an increase in period at high temperatures that compensates for the decrease in period due to Arrhenius scaling of the reaction rates. The result is a transcriptional oscillator with a nearly constant period of 48 min for temperatures ranging from 30 °C to 41 °C. In contrast, in the absence of the mutation the period of the oscillator drops from 60 to 30 min over the same temperature range. This work demonstrates that synthetic gene circuits can be engineered to be robust to extracellular conditions through protein-level modifications.</description><subject>Amino acids</subject><subject>Biological Sciences</subject><subject>Biotechnology</subject><subject>Circadian Clocks</subject><subject>Computer Simulation</subject><subject>E coli</subject><subject>Environmental conditions</subject><subject>environmental factors</subject><subject>Escherichia coli</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fluorescence</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Isopropyl Thiogalactoside - chemistry</subject><subject>Lac Repressors - metabolism</subject><subject>lactose</subject><subject>Mechanical oscillators</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>mutants</subject><subject>Mutation</subject><subject>Oscillators</subject><subject>Plasmids</subject><subject>Protein Engineering</subject><subject>Proteins - chemistry</subject><subject>repressor proteins</subject><subject>Synthetic Biology</subject><subject>Synthetic genes</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Thermoregulation</subject><subject>Time Factors</subject><subject>transcription (genetics)</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxVcIREPhzAlYiQuXbWc8_rxUoKp8SJU4QM-W43jTDYkd7F2k_vfsNiEBLj3NSPObp3nzquolwhmCovNtdOUMCSUzGhEfVTMEg43kBh5XMwCmGs0ZP6melbICACM0PK1OGKepM7Pq_VVcdjGEHBZ1HzbbkF0_5FD7NPaxuL5Lse5i7epyF_vb0He-XoZ4X_06-R_PqyetW5fwYl9Pq5uPV98vPzfXXz99ufxw3XjJsG9adAK9l56cAz0npIU2wrfMI4DXLTli2nDJgMyceZJCO8EoSI2uFS3QaXWx090O801Y-BD77NZ2m7uNy3c2uc7-O4ndrV2mX5YMEBM4CrzbC-T0cwilt5uu-LBeuxjSUCxqGK8i1OxhVIAgzoWih1FumFRS8Un17X_oKg05jk-7p5hipKYzz3eUz6mUHNqDRQQ7ZW6nzO0x83Hj9d-fOfB_Qh6BV3tg2jzIIVqyRrHjfFX6lI_7pBRwnDy-2c1bl6xb5q7Ym28MUAIgjfY4_QbpkMLy</recordid><startdate>20140121</startdate><enddate>20140121</enddate><creator>Hussain, Faiza</creator><creator>Gupta, Chinmaya</creator><creator>Hirning, Andrew J.</creator><creator>Ott, William</creator><creator>Matthews, Kathleen S.</creator><creator>Josić, Krešimir</creator><creator>Bennett, Matthew R.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140121</creationdate><title>Engineered temperature compensation in a synthetic genetic clock</title><author>Hussain, Faiza ; Gupta, Chinmaya ; Hirning, Andrew J. ; Ott, William ; Matthews, Kathleen S. ; Josić, Krešimir ; Bennett, Matthew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621t-f1a51cc6c3aa08b313d895cf2c100c8f3a3289462039b2c3658a523e681af5f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino acids</topic><topic>Biological Sciences</topic><topic>Biotechnology</topic><topic>Circadian Clocks</topic><topic>Computer Simulation</topic><topic>E coli</topic><topic>Environmental conditions</topic><topic>environmental factors</topic><topic>Escherichia coli</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fluorescence</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Isopropyl Thiogalactoside - chemistry</topic><topic>Lac Repressors - metabolism</topic><topic>lactose</topic><topic>Mechanical oscillators</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>mutants</topic><topic>Mutation</topic><topic>Oscillators</topic><topic>Plasmids</topic><topic>Protein Engineering</topic><topic>Proteins - chemistry</topic><topic>repressor proteins</topic><topic>Synthetic Biology</topic><topic>Synthetic genes</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Thermoregulation</topic><topic>Time Factors</topic><topic>transcription (genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Faiza</creatorcontrib><creatorcontrib>Gupta, Chinmaya</creatorcontrib><creatorcontrib>Hirning, Andrew J.</creatorcontrib><creatorcontrib>Ott, William</creatorcontrib><creatorcontrib>Matthews, Kathleen S.</creatorcontrib><creatorcontrib>Josić, Krešimir</creatorcontrib><creatorcontrib>Bennett, Matthew R.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Faiza</au><au>Gupta, Chinmaya</au><au>Hirning, Andrew J.</au><au>Ott, William</au><au>Matthews, Kathleen S.</au><au>Josić, Krešimir</au><au>Bennett, Matthew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered temperature compensation in a synthetic genetic clock</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-01-21</date><risdate>2014</risdate><volume>111</volume><issue>3</issue><spage>972</spage><epage>977</epage><pages>972-977</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Synthetic biology promises to revolutionize biotechnology by providing the means to reengineer and reprogram cellular regulatory mechanisms. However, synthetic gene circuits are often unreliable, as changes to environmental conditions can fundamentally alter a circuit’s behavior. One way to improve robustness is to use intrinsic properties of transcription factors within the circuit to buffer against intra- and extracellular variability. Here, we describe the design and construction of a synthetic gene oscillator in Escherichia coli that maintains a constant period over a range of temperatures. We started with a previously described synthetic dual-feedback oscillator with a temperature-dependent period. Computational modeling predicted and subsequent experiments confirmed that a single amino acid mutation to the core transcriptional repressor of the circuit results in temperature compensation. Specifically, we used a temperature-sensitive lactose repressor mutant that loses the ability to repress its target promoter at high temperatures. In the oscillator, this thermoinduction of the repressor leads to an increase in period at high temperatures that compensates for the decrease in period due to Arrhenius scaling of the reaction rates. The result is a transcriptional oscillator with a nearly constant period of 48 min for temperatures ranging from 30 °C to 41 °C. In contrast, in the absence of the mutation the period of the oscillator drops from 60 to 30 min over the same temperature range. This work demonstrates that synthetic gene circuits can be engineered to be robust to extracellular conditions through protein-level modifications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24395809</pmid><doi>10.1073/pnas.1316298111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-01, Vol.111 (3), p.972-977 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1316298111 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino acids Biological Sciences Biotechnology Circadian Clocks Computer Simulation E coli Environmental conditions environmental factors Escherichia coli Escherichia coli - metabolism Escherichia coli Proteins - metabolism Fluorescence Gene Regulatory Networks Genes Genetic engineering Isopropyl Thiogalactoside - chemistry Lac Repressors - metabolism lactose Mechanical oscillators Microfluidic devices Microfluidics mutants Mutation Oscillators Plasmids Protein Engineering Proteins - chemistry repressor proteins Synthetic Biology Synthetic genes Temperature Temperature distribution Thermoregulation Time Factors transcription (genetics) |
title | Engineered temperature compensation in a synthetic genetic clock |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20temperature%20compensation%20in%20a%20synthetic%20genetic%20clock&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hussain,%20Faiza&rft.date=2014-01-21&rft.volume=111&rft.issue=3&rft.spage=972&rft.epage=977&rft.pages=972-977&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1316298111&rft_dat=%3Cjstor_cross%3E23770413%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492272371&rft_id=info:pmid/24395809&rft_jstor_id=23770413&rfr_iscdi=true |