Postsynaptic neural activity regulates neuronal addition in the adult avian song control system
A striking feature of the nervous system is that it shows extensive plasticity of structure and function that allows animals to adjust to changes in their environment. Neural activity plays a key role in mediating experience-dependent neural plasticity and, thus, creates a link between the external...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-10, Vol.110 (41), p.16640-16644 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16644 |
---|---|
container_issue | 41 |
container_start_page | 16640 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Larson, Tracy A. Wang, Tsu-Wei Gale, Samuel D. Miller, Kimberly E. Thatra, Nivretta M. Caras, Melissa L. Perkel, David J. Brenowitz, Eliot A. |
description | A striking feature of the nervous system is that it shows extensive plasticity of structure and function that allows animals to adjust to changes in their environment. Neural activity plays a key role in mediating experience-dependent neural plasticity and, thus, creates a link between the external environment, the nervous system, and behavior. One dramatic example of neural plasticity is ongoing neurogenesis in the adult brain. The role of neural activity in modulating neuronal addition, however, has not been well studied at the level of neural circuits. The avian song control system allows us to investigate how activity influences neuronal addition to a neural circuit that regulates song, a learned sensorimotor social behavior. In adult white-crowned sparrows, new neurons are added continually to the song nucleus HVC (proper name) and project their axons to its target nucleus, the robust nucleus of the arcopallium (RA). We report here that electrical activity in RA regulates neuronal addition to HVC. Decreasing neural activity in RA by intracerebral infusion of the GABA A receptor agonist muscimol decreased the number of new HVC neurons by 56%. Our results suggest that postsynaptic electrical activity influences the addition of new neurons into a functional neural circuit in adult birds. |
doi_str_mv | 10.1073/pnas.1310237110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1310237110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23749575</jstor_id><sourcerecordid>23749575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621t-50575ce3552a8eae711ce08f92d8df2f70ae0aa753ae6c3c9c24944da2b095863</originalsourceid><addsrcrecordid>eNpdkd1rFDEUxQdR7Lb67JM6IIIv0958TSYvgpT6AQUF7XO4zWS2WWaTNcks7H9vxl131acQzi_n3JtTVS8IXBKQ7GrjMV0SRoAySQg8qhYEFGlaruBxtQCgsuk45WfVeUorAFCig6fVGeXQUi7YotLfQspp53GTnam9nSKONZrsti7v6miX04jZpt9K8LPW9y674Gvn6_xgy30ac41bh75OwS9rE3yOYazTLmW7flY9GXBM9vnhvKjuPt78uP7c3H799OX6w21jWkpyI0BIYSwTgmJn0ZZljIVuULTv-oEOEtACohQMbWuYUYZyxXmP9H7eqWUX1fu972a6X9ve2DIEjnoT3RrjTgd0-l_Fuwe9DFvNpFIMeDF4dzCI4edkU9Zrl4wdR_Q2TEkTrmgLXQtz1pv_0FWYYvmcmeJUdEwKVairPWViSCna4TgMAT2Xp-fy9Km88uLV3zsc-T9tFeDtAcBkcBwieuPSiZMdiI53hasP3JxwjC25nGjStnzOerlHVimHeLJgkqtSRdFf7_UBg8ZlLDF33ymQFoBwkESwX8nKwZE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442583759</pqid></control><display><type>article</type><title>Postsynaptic neural activity regulates neuronal addition in the adult avian song control system</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Larson, Tracy A. ; Wang, Tsu-Wei ; Gale, Samuel D. ; Miller, Kimberly E. ; Thatra, Nivretta M. ; Caras, Melissa L. ; Perkel, David J. ; Brenowitz, Eliot A.</creator><creatorcontrib>Larson, Tracy A. ; Wang, Tsu-Wei ; Gale, Samuel D. ; Miller, Kimberly E. ; Thatra, Nivretta M. ; Caras, Melissa L. ; Perkel, David J. ; Brenowitz, Eliot A.</creatorcontrib><description>A striking feature of the nervous system is that it shows extensive plasticity of structure and function that allows animals to adjust to changes in their environment. Neural activity plays a key role in mediating experience-dependent neural plasticity and, thus, creates a link between the external environment, the nervous system, and behavior. One dramatic example of neural plasticity is ongoing neurogenesis in the adult brain. The role of neural activity in modulating neuronal addition, however, has not been well studied at the level of neural circuits. The avian song control system allows us to investigate how activity influences neuronal addition to a neural circuit that regulates song, a learned sensorimotor social behavior. In adult white-crowned sparrows, new neurons are added continually to the song nucleus HVC (proper name) and project their axons to its target nucleus, the robust nucleus of the arcopallium (RA). We report here that electrical activity in RA regulates neuronal addition to HVC. Decreasing neural activity in RA by intracerebral infusion of the GABA A receptor agonist muscimol decreased the number of new HVC neurons by 56%. Our results suggest that postsynaptic electrical activity influences the addition of new neurons into a functional neural circuit in adult birds.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1310237110</identifier><identifier>PMID: 24062453</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences</publisher><subject>Analysis of Variance ; Animal communication ; Animals ; Behavioral neuroscience ; Biological and medical sciences ; Biological Sciences ; Bird songs ; Birds ; Body Weights and Measures ; Boron Compounds ; Brain ; Brain - metabolism ; Bromodeoxyuridine ; Catheterization ; Fundamental and applied biological sciences. Psychology ; GABA-A Receptor Agonists - administration & dosage ; GABA-A Receptor Agonists - pharmacology ; Hemispheres ; Heterocyclic Compounds, 3-Ring ; Histological Techniques ; Immunohistochemistry ; Male ; Muscimol - administration & dosage ; Muscimol - pharmacology ; Nervous system ; Neural conduction ; Neurogenesis ; Neurogenesis - physiology ; Neurons ; Passeriformes - physiology ; Pumps ; Rhodamines ; Synaptic Potentials - physiology ; Vehicles ; Vertebrates: nervous system and sense organs ; Vocalization, Animal - physiology ; Washington</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-10, Vol.110 (41), p.16640-16644</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Oct 8, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c621t-50575ce3552a8eae711ce08f92d8df2f70ae0aa753ae6c3c9c24944da2b095863</citedby><cites>FETCH-LOGICAL-c621t-50575ce3552a8eae711ce08f92d8df2f70ae0aa753ae6c3c9c24944da2b095863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/41.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23749575$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23749575$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27805848$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24062453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Larson, Tracy A.</creatorcontrib><creatorcontrib>Wang, Tsu-Wei</creatorcontrib><creatorcontrib>Gale, Samuel D.</creatorcontrib><creatorcontrib>Miller, Kimberly E.</creatorcontrib><creatorcontrib>Thatra, Nivretta M.</creatorcontrib><creatorcontrib>Caras, Melissa L.</creatorcontrib><creatorcontrib>Perkel, David J.</creatorcontrib><creatorcontrib>Brenowitz, Eliot A.</creatorcontrib><title>Postsynaptic neural activity regulates neuronal addition in the adult avian song control system</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A striking feature of the nervous system is that it shows extensive plasticity of structure and function that allows animals to adjust to changes in their environment. Neural activity plays a key role in mediating experience-dependent neural plasticity and, thus, creates a link between the external environment, the nervous system, and behavior. One dramatic example of neural plasticity is ongoing neurogenesis in the adult brain. The role of neural activity in modulating neuronal addition, however, has not been well studied at the level of neural circuits. The avian song control system allows us to investigate how activity influences neuronal addition to a neural circuit that regulates song, a learned sensorimotor social behavior. In adult white-crowned sparrows, new neurons are added continually to the song nucleus HVC (proper name) and project their axons to its target nucleus, the robust nucleus of the arcopallium (RA). We report here that electrical activity in RA regulates neuronal addition to HVC. Decreasing neural activity in RA by intracerebral infusion of the GABA A receptor agonist muscimol decreased the number of new HVC neurons by 56%. Our results suggest that postsynaptic electrical activity influences the addition of new neurons into a functional neural circuit in adult birds.</description><subject>Analysis of Variance</subject><subject>Animal communication</subject><subject>Animals</subject><subject>Behavioral neuroscience</subject><subject>Biological and medical sciences</subject><subject>Biological Sciences</subject><subject>Bird songs</subject><subject>Birds</subject><subject>Body Weights and Measures</subject><subject>Boron Compounds</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Bromodeoxyuridine</subject><subject>Catheterization</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GABA-A Receptor Agonists - administration & dosage</subject><subject>GABA-A Receptor Agonists - pharmacology</subject><subject>Hemispheres</subject><subject>Heterocyclic Compounds, 3-Ring</subject><subject>Histological Techniques</subject><subject>Immunohistochemistry</subject><subject>Male</subject><subject>Muscimol - administration & dosage</subject><subject>Muscimol - pharmacology</subject><subject>Nervous system</subject><subject>Neural conduction</subject><subject>Neurogenesis</subject><subject>Neurogenesis - physiology</subject><subject>Neurons</subject><subject>Passeriformes - physiology</subject><subject>Pumps</subject><subject>Rhodamines</subject><subject>Synaptic Potentials - physiology</subject><subject>Vehicles</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Vocalization, Animal - physiology</subject><subject>Washington</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkd1rFDEUxQdR7Lb67JM6IIIv0958TSYvgpT6AQUF7XO4zWS2WWaTNcks7H9vxl131acQzi_n3JtTVS8IXBKQ7GrjMV0SRoAySQg8qhYEFGlaruBxtQCgsuk45WfVeUorAFCig6fVGeXQUi7YotLfQspp53GTnam9nSKONZrsti7v6miX04jZpt9K8LPW9y674Gvn6_xgy30ac41bh75OwS9rE3yOYazTLmW7flY9GXBM9vnhvKjuPt78uP7c3H799OX6w21jWkpyI0BIYSwTgmJn0ZZljIVuULTv-oEOEtACohQMbWuYUYZyxXmP9H7eqWUX1fu972a6X9ve2DIEjnoT3RrjTgd0-l_Fuwe9DFvNpFIMeDF4dzCI4edkU9Zrl4wdR_Q2TEkTrmgLXQtz1pv_0FWYYvmcmeJUdEwKVairPWViSCna4TgMAT2Xp-fy9Km88uLV3zsc-T9tFeDtAcBkcBwieuPSiZMdiI53hasP3JxwjC25nGjStnzOerlHVimHeLJgkqtSRdFf7_UBg8ZlLDF33ymQFoBwkESwX8nKwZE</recordid><startdate>20131008</startdate><enddate>20131008</enddate><creator>Larson, Tracy A.</creator><creator>Wang, Tsu-Wei</creator><creator>Gale, Samuel D.</creator><creator>Miller, Kimberly E.</creator><creator>Thatra, Nivretta M.</creator><creator>Caras, Melissa L.</creator><creator>Perkel, David J.</creator><creator>Brenowitz, Eliot A.</creator><general>National Academy of Sciences</general><general>NATIONAL ACADEMY OF SCIENCES</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20131008</creationdate><title>Postsynaptic neural activity regulates neuronal addition in the adult avian song control system</title><author>Larson, Tracy A. ; Wang, Tsu-Wei ; Gale, Samuel D. ; Miller, Kimberly E. ; Thatra, Nivretta M. ; Caras, Melissa L. ; Perkel, David J. ; Brenowitz, Eliot A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621t-50575ce3552a8eae711ce08f92d8df2f70ae0aa753ae6c3c9c24944da2b095863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis of Variance</topic><topic>Animal communication</topic><topic>Animals</topic><topic>Behavioral neuroscience</topic><topic>Biological and medical sciences</topic><topic>Biological Sciences</topic><topic>Bird songs</topic><topic>Birds</topic><topic>Body Weights and Measures</topic><topic>Boron Compounds</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Bromodeoxyuridine</topic><topic>Catheterization</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GABA-A Receptor Agonists - administration & dosage</topic><topic>GABA-A Receptor Agonists - pharmacology</topic><topic>Hemispheres</topic><topic>Heterocyclic Compounds, 3-Ring</topic><topic>Histological Techniques</topic><topic>Immunohistochemistry</topic><topic>Male</topic><topic>Muscimol - administration & dosage</topic><topic>Muscimol - pharmacology</topic><topic>Nervous system</topic><topic>Neural conduction</topic><topic>Neurogenesis</topic><topic>Neurogenesis - physiology</topic><topic>Neurons</topic><topic>Passeriformes - physiology</topic><topic>Pumps</topic><topic>Rhodamines</topic><topic>Synaptic Potentials - physiology</topic><topic>Vehicles</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Vocalization, Animal - physiology</topic><topic>Washington</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larson, Tracy A.</creatorcontrib><creatorcontrib>Wang, Tsu-Wei</creatorcontrib><creatorcontrib>Gale, Samuel D.</creatorcontrib><creatorcontrib>Miller, Kimberly E.</creatorcontrib><creatorcontrib>Thatra, Nivretta M.</creatorcontrib><creatorcontrib>Caras, Melissa L.</creatorcontrib><creatorcontrib>Perkel, David J.</creatorcontrib><creatorcontrib>Brenowitz, Eliot A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larson, Tracy A.</au><au>Wang, Tsu-Wei</au><au>Gale, Samuel D.</au><au>Miller, Kimberly E.</au><au>Thatra, Nivretta M.</au><au>Caras, Melissa L.</au><au>Perkel, David J.</au><au>Brenowitz, Eliot A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Postsynaptic neural activity regulates neuronal addition in the adult avian song control system</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-10-08</date><risdate>2013</risdate><volume>110</volume><issue>41</issue><spage>16640</spage><epage>16644</epage><pages>16640-16644</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>A striking feature of the nervous system is that it shows extensive plasticity of structure and function that allows animals to adjust to changes in their environment. Neural activity plays a key role in mediating experience-dependent neural plasticity and, thus, creates a link between the external environment, the nervous system, and behavior. One dramatic example of neural plasticity is ongoing neurogenesis in the adult brain. The role of neural activity in modulating neuronal addition, however, has not been well studied at the level of neural circuits. The avian song control system allows us to investigate how activity influences neuronal addition to a neural circuit that regulates song, a learned sensorimotor social behavior. In adult white-crowned sparrows, new neurons are added continually to the song nucleus HVC (proper name) and project their axons to its target nucleus, the robust nucleus of the arcopallium (RA). We report here that electrical activity in RA regulates neuronal addition to HVC. Decreasing neural activity in RA by intracerebral infusion of the GABA A receptor agonist muscimol decreased the number of new HVC neurons by 56%. Our results suggest that postsynaptic electrical activity influences the addition of new neurons into a functional neural circuit in adult birds.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences</pub><pmid>24062453</pmid><doi>10.1073/pnas.1310237110</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-10, Vol.110 (41), p.16640-16644 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1310237110 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Analysis of Variance Animal communication Animals Behavioral neuroscience Biological and medical sciences Biological Sciences Bird songs Birds Body Weights and Measures Boron Compounds Brain Brain - metabolism Bromodeoxyuridine Catheterization Fundamental and applied biological sciences. Psychology GABA-A Receptor Agonists - administration & dosage GABA-A Receptor Agonists - pharmacology Hemispheres Heterocyclic Compounds, 3-Ring Histological Techniques Immunohistochemistry Male Muscimol - administration & dosage Muscimol - pharmacology Nervous system Neural conduction Neurogenesis Neurogenesis - physiology Neurons Passeriformes - physiology Pumps Rhodamines Synaptic Potentials - physiology Vehicles Vertebrates: nervous system and sense organs Vocalization, Animal - physiology Washington |
title | Postsynaptic neural activity regulates neuronal addition in the adult avian song control system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Postsynaptic%20neural%20activity%20regulates%20neuronal%20addition%20in%20the%20adult%20avian%20song%20control%20system&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Larson,%20Tracy%20A.&rft.date=2013-10-08&rft.volume=110&rft.issue=41&rft.spage=16640&rft.epage=16644&rft.pages=16640-16644&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.1310237110&rft_dat=%3Cjstor_cross%3E23749575%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442583759&rft_id=info:pmid/24062453&rft_jstor_id=23749575&rfr_iscdi=true |