Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians

Human and murine MHC nonclassical class Ib-restricted invariant T (iT) cell subsets, such as invariant natural killer T cells (iNKT) and mucosal-associated invariant T cells, have specialized functions early in immune responses, especially in modulating subsequent adaptive immune responses. Here, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-08, Vol.110 (35), p.14342-14347
Hauptverfasser: Edholm, Eva-Stina, Albertorio Saez, Liz-Marie, Gill, Ann L, Gill, Steven R, Grayfer, Leon, Haynes, Nikesha, Myers, Jason R, Robert, Jacques
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14347
container_issue 35
container_start_page 14342
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Edholm, Eva-Stina
Albertorio Saez, Liz-Marie
Gill, Ann L
Gill, Steven R
Grayfer, Leon
Haynes, Nikesha
Myers, Jason R
Robert, Jacques
description Human and murine MHC nonclassical class Ib-restricted invariant T (iT) cell subsets, such as invariant natural killer T cells (iNKT) and mucosal-associated invariant T cells, have specialized functions early in immune responses, especially in modulating subsequent adaptive immune responses. Here, we characterize a prominent iT population in the amphibian Xenopus laevis and show the requirement of the class Ib molecule, Xenopus nonclassical gene 10, in its differentiation and function. Using Xenopus nonclassical gene 10 tetramers and RNAi loss of function by transgenesis, we identified a large class Ib-dependent CD8 ⁻/CD4 ⁻ iT subset in unmanipulated frogs and tadpoles. This population is critical for antiviral immunity during early larval stages when classical MHC class Ia function is suboptimal. Furthermore, in young tadpoles with low class Ia expression, deep sequencing revealed additional preponderant invariant T cell receptor (TCR)α rearrangements, implying other iT cell subsets and a predominant selection process mediated by other class Ib molecules. The restriction and requirement of class Ib molecules for development and antiviral immunity of a mammalian iNKT or mucosal-associated invariant T cell counterpart in the amphibian Xenopus show the importance of iT cells in the emergence and evolution of the adaptive immune system.
doi_str_mv 10.1073/pnas.1309840110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1309840110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060566321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-f855dbfc5a223d3690d856cb4b070dcc54b3a7c4a1c7a1a6cdc2da5d757debe53</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEokvhzA0sceGSdvwVJxcktAJaqcCB9mxNbKd1ldjB3l2pd_5wHHZZPk4ea37vecavql5SOKOg-PkcMJ9RDl0rgFJ4VK0odLRuRAePqxUAU3UrmDipnuV8DwCdbOFpdcJ4J4AzWFU_vsRgRszZGxzJ54s1-XUjl7V1swvWhQ3xYYfJY6muiXHjmAkmR9wujtuNj6H0xgdiYsgu7ZwlGCyZU5x8WMRDqYjDVBDrdm6M87T3JDjNd74vvvl59WTAMbsXh_O0uvn44Xp9UV99_XS5fn9VG6FgUw-tlLYfjETGuOVNB7aVjelFDwqsMVL0HJURSI1Cio2xhlmUVkllXe8kP63e7X3nbT85a8ogCUc9Jz9hetARvf63E_ydvo07zVVDpVoM3h4MUvy-dXmjJ5-XL8Hg4jZrKlirFBcSCvrmP_Q-blMo6y1Ux5oGJC3U-Z4yKeac3HAchoJeEtZLwvpPwkXx6u8djvzvSAtADsCiPNoVPy7L01ywgrzeIwNGjbfJZ33zjQFtAKiAjgP_CbRxuXY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429266051</pqid></control><display><type>article</type><title>Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Edholm, Eva-Stina ; Albertorio Saez, Liz-Marie ; Gill, Ann L ; Gill, Steven R ; Grayfer, Leon ; Haynes, Nikesha ; Myers, Jason R ; Robert, Jacques</creator><creatorcontrib>Edholm, Eva-Stina ; Albertorio Saez, Liz-Marie ; Gill, Ann L ; Gill, Steven R ; Grayfer, Leon ; Haynes, Nikesha ; Myers, Jason R ; Robert, Jacques</creatorcontrib><description>Human and murine MHC nonclassical class Ib-restricted invariant T (iT) cell subsets, such as invariant natural killer T cells (iNKT) and mucosal-associated invariant T cells, have specialized functions early in immune responses, especially in modulating subsequent adaptive immune responses. Here, we characterize a prominent iT population in the amphibian Xenopus laevis and show the requirement of the class Ib molecule, Xenopus nonclassical gene 10, in its differentiation and function. Using Xenopus nonclassical gene 10 tetramers and RNAi loss of function by transgenesis, we identified a large class Ib-dependent CD8 ⁻/CD4 ⁻ iT subset in unmanipulated frogs and tadpoles. This population is critical for antiviral immunity during early larval stages when classical MHC class Ia function is suboptimal. Furthermore, in young tadpoles with low class Ia expression, deep sequencing revealed additional preponderant invariant T cell receptor (TCR)α rearrangements, implying other iT cell subsets and a predominant selection process mediated by other class Ib molecules. The restriction and requirement of class Ib molecules for development and antiviral immunity of a mammalian iNKT or mucosal-associated invariant T cell counterpart in the amphibian Xenopus show the importance of iT cells in the emergence and evolution of the adaptive immune system.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1309840110</identifier><identifier>PMID: 23940320</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptive Immunity ; Animals ; Biological Sciences ; Cell Differentiation ; Evolution ; Histocompatibility Antigens Class I ; Immune system ; Molecules ; Reptiles &amp; amphibians ; T cell receptors ; T-Lymphocytes - cytology ; T-Lymphocytes - immunology ; Xenopus - embryology ; Xenopus - immunology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-08, Vol.110 (35), p.14342-14347</ispartof><rights>Copyright National Academy of Sciences Aug 27, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-f855dbfc5a223d3690d856cb4b070dcc54b3a7c4a1c7a1a6cdc2da5d757debe53</citedby><cites>FETCH-LOGICAL-c470t-f855dbfc5a223d3690d856cb4b070dcc54b3a7c4a1c7a1a6cdc2da5d757debe53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/35.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761575/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761575/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23940320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Edholm, Eva-Stina</creatorcontrib><creatorcontrib>Albertorio Saez, Liz-Marie</creatorcontrib><creatorcontrib>Gill, Ann L</creatorcontrib><creatorcontrib>Gill, Steven R</creatorcontrib><creatorcontrib>Grayfer, Leon</creatorcontrib><creatorcontrib>Haynes, Nikesha</creatorcontrib><creatorcontrib>Myers, Jason R</creatorcontrib><creatorcontrib>Robert, Jacques</creatorcontrib><title>Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Human and murine MHC nonclassical class Ib-restricted invariant T (iT) cell subsets, such as invariant natural killer T cells (iNKT) and mucosal-associated invariant T cells, have specialized functions early in immune responses, especially in modulating subsequent adaptive immune responses. Here, we characterize a prominent iT population in the amphibian Xenopus laevis and show the requirement of the class Ib molecule, Xenopus nonclassical gene 10, in its differentiation and function. Using Xenopus nonclassical gene 10 tetramers and RNAi loss of function by transgenesis, we identified a large class Ib-dependent CD8 ⁻/CD4 ⁻ iT subset in unmanipulated frogs and tadpoles. This population is critical for antiviral immunity during early larval stages when classical MHC class Ia function is suboptimal. Furthermore, in young tadpoles with low class Ia expression, deep sequencing revealed additional preponderant invariant T cell receptor (TCR)α rearrangements, implying other iT cell subsets and a predominant selection process mediated by other class Ib molecules. The restriction and requirement of class Ib molecules for development and antiviral immunity of a mammalian iNKT or mucosal-associated invariant T cell counterpart in the amphibian Xenopus show the importance of iT cells in the emergence and evolution of the adaptive immune system.</description><subject>Adaptive Immunity</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell Differentiation</subject><subject>Evolution</subject><subject>Histocompatibility Antigens Class I</subject><subject>Immune system</subject><subject>Molecules</subject><subject>Reptiles &amp; amphibians</subject><subject>T cell receptors</subject><subject>T-Lymphocytes - cytology</subject><subject>T-Lymphocytes - immunology</subject><subject>Xenopus - embryology</subject><subject>Xenopus - immunology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxSMEokvhzA0sceGSdvwVJxcktAJaqcCB9mxNbKd1ldjB3l2pd_5wHHZZPk4ea37vecavql5SOKOg-PkcMJ9RDl0rgFJ4VK0odLRuRAePqxUAU3UrmDipnuV8DwCdbOFpdcJ4J4AzWFU_vsRgRszZGxzJ54s1-XUjl7V1swvWhQ3xYYfJY6muiXHjmAkmR9wujtuNj6H0xgdiYsgu7ZwlGCyZU5x8WMRDqYjDVBDrdm6M87T3JDjNd74vvvl59WTAMbsXh_O0uvn44Xp9UV99_XS5fn9VG6FgUw-tlLYfjETGuOVNB7aVjelFDwqsMVL0HJURSI1Cio2xhlmUVkllXe8kP63e7X3nbT85a8ogCUc9Jz9hetARvf63E_ydvo07zVVDpVoM3h4MUvy-dXmjJ5-XL8Hg4jZrKlirFBcSCvrmP_Q-blMo6y1Ux5oGJC3U-Z4yKeac3HAchoJeEtZLwvpPwkXx6u8djvzvSAtADsCiPNoVPy7L01ywgrzeIwNGjbfJZ33zjQFtAKiAjgP_CbRxuXY</recordid><startdate>20130827</startdate><enddate>20130827</enddate><creator>Edholm, Eva-Stina</creator><creator>Albertorio Saez, Liz-Marie</creator><creator>Gill, Ann L</creator><creator>Gill, Steven R</creator><creator>Grayfer, Leon</creator><creator>Haynes, Nikesha</creator><creator>Myers, Jason R</creator><creator>Robert, Jacques</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130827</creationdate><title>Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians</title><author>Edholm, Eva-Stina ; Albertorio Saez, Liz-Marie ; Gill, Ann L ; Gill, Steven R ; Grayfer, Leon ; Haynes, Nikesha ; Myers, Jason R ; Robert, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-f855dbfc5a223d3690d856cb4b070dcc54b3a7c4a1c7a1a6cdc2da5d757debe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptive Immunity</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell Differentiation</topic><topic>Evolution</topic><topic>Histocompatibility Antigens Class I</topic><topic>Immune system</topic><topic>Molecules</topic><topic>Reptiles &amp; amphibians</topic><topic>T cell receptors</topic><topic>T-Lymphocytes - cytology</topic><topic>T-Lymphocytes - immunology</topic><topic>Xenopus - embryology</topic><topic>Xenopus - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edholm, Eva-Stina</creatorcontrib><creatorcontrib>Albertorio Saez, Liz-Marie</creatorcontrib><creatorcontrib>Gill, Ann L</creatorcontrib><creatorcontrib>Gill, Steven R</creatorcontrib><creatorcontrib>Grayfer, Leon</creatorcontrib><creatorcontrib>Haynes, Nikesha</creatorcontrib><creatorcontrib>Myers, Jason R</creatorcontrib><creatorcontrib>Robert, Jacques</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edholm, Eva-Stina</au><au>Albertorio Saez, Liz-Marie</au><au>Gill, Ann L</au><au>Gill, Steven R</au><au>Grayfer, Leon</au><au>Haynes, Nikesha</au><au>Myers, Jason R</au><au>Robert, Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-08-27</date><risdate>2013</risdate><volume>110</volume><issue>35</issue><spage>14342</spage><epage>14347</epage><pages>14342-14347</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Human and murine MHC nonclassical class Ib-restricted invariant T (iT) cell subsets, such as invariant natural killer T cells (iNKT) and mucosal-associated invariant T cells, have specialized functions early in immune responses, especially in modulating subsequent adaptive immune responses. Here, we characterize a prominent iT population in the amphibian Xenopus laevis and show the requirement of the class Ib molecule, Xenopus nonclassical gene 10, in its differentiation and function. Using Xenopus nonclassical gene 10 tetramers and RNAi loss of function by transgenesis, we identified a large class Ib-dependent CD8 ⁻/CD4 ⁻ iT subset in unmanipulated frogs and tadpoles. This population is critical for antiviral immunity during early larval stages when classical MHC class Ia function is suboptimal. Furthermore, in young tadpoles with low class Ia expression, deep sequencing revealed additional preponderant invariant T cell receptor (TCR)α rearrangements, implying other iT cell subsets and a predominant selection process mediated by other class Ib molecules. The restriction and requirement of class Ib molecules for development and antiviral immunity of a mammalian iNKT or mucosal-associated invariant T cell counterpart in the amphibian Xenopus show the importance of iT cells in the emergence and evolution of the adaptive immune system.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23940320</pmid><doi>10.1073/pnas.1309840110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-08, Vol.110 (35), p.14342-14347
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1309840110
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adaptive Immunity
Animals
Biological Sciences
Cell Differentiation
Evolution
Histocompatibility Antigens Class I
Immune system
Molecules
Reptiles & amphibians
T cell receptors
T-Lymphocytes - cytology
T-Lymphocytes - immunology
Xenopus - embryology
Xenopus - immunology
title Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonclassical%20MHC%20class%20I-dependent%20invariant%20T%20cells%20are%20evolutionarily%20conserved%20and%20prominent%20from%20early%20development%20in%20amphibians&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Edholm,%20Eva-Stina&rft.date=2013-08-27&rft.volume=110&rft.issue=35&rft.spage=14342&rft.epage=14347&rft.pages=14342-14347&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1309840110&rft_dat=%3Cproquest_cross%3E3060566321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429266051&rft_id=info:pmid/23940320&rfr_iscdi=true