Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians
Human and murine MHC nonclassical class Ib-restricted invariant T (iT) cell subsets, such as invariant natural killer T cells (iNKT) and mucosal-associated invariant T cells, have specialized functions early in immune responses, especially in modulating subsequent adaptive immune responses. Here, we...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-08, Vol.110 (35), p.14342-14347 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14347 |
---|---|
container_issue | 35 |
container_start_page | 14342 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Edholm, Eva-Stina Albertorio Saez, Liz-Marie Gill, Ann L Gill, Steven R Grayfer, Leon Haynes, Nikesha Myers, Jason R Robert, Jacques |
description | Human and murine MHC nonclassical class Ib-restricted invariant T (iT) cell subsets, such as invariant natural killer T cells (iNKT) and mucosal-associated invariant T cells, have specialized functions early in immune responses, especially in modulating subsequent adaptive immune responses. Here, we characterize a prominent iT population in the amphibian Xenopus laevis and show the requirement of the class Ib molecule, Xenopus nonclassical gene 10, in its differentiation and function. Using Xenopus nonclassical gene 10 tetramers and RNAi loss of function by transgenesis, we identified a large class Ib-dependent CD8 ⁻/CD4 ⁻ iT subset in unmanipulated frogs and tadpoles. This population is critical for antiviral immunity during early larval stages when classical MHC class Ia function is suboptimal. Furthermore, in young tadpoles with low class Ia expression, deep sequencing revealed additional preponderant invariant T cell receptor (TCR)α rearrangements, implying other iT cell subsets and a predominant selection process mediated by other class Ib molecules. The restriction and requirement of class Ib molecules for development and antiviral immunity of a mammalian iNKT or mucosal-associated invariant T cell counterpart in the amphibian Xenopus show the importance of iT cells in the emergence and evolution of the adaptive immune system. |
doi_str_mv | 10.1073/pnas.1309840110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1309840110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060566321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-f855dbfc5a223d3690d856cb4b070dcc54b3a7c4a1c7a1a6cdc2da5d757debe53</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEokvhzA0sceGSdvwVJxcktAJaqcCB9mxNbKd1ldjB3l2pd_5wHHZZPk4ea37vecavql5SOKOg-PkcMJ9RDl0rgFJ4VK0odLRuRAePqxUAU3UrmDipnuV8DwCdbOFpdcJ4J4AzWFU_vsRgRszZGxzJ54s1-XUjl7V1swvWhQ3xYYfJY6muiXHjmAkmR9wujtuNj6H0xgdiYsgu7ZwlGCyZU5x8WMRDqYjDVBDrdm6M87T3JDjNd74vvvl59WTAMbsXh_O0uvn44Xp9UV99_XS5fn9VG6FgUw-tlLYfjETGuOVNB7aVjelFDwqsMVL0HJURSI1Cio2xhlmUVkllXe8kP63e7X3nbT85a8ogCUc9Jz9hetARvf63E_ydvo07zVVDpVoM3h4MUvy-dXmjJ5-XL8Hg4jZrKlirFBcSCvrmP_Q-blMo6y1Ux5oGJC3U-Z4yKeac3HAchoJeEtZLwvpPwkXx6u8djvzvSAtADsCiPNoVPy7L01ywgrzeIwNGjbfJZ33zjQFtAKiAjgP_CbRxuXY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429266051</pqid></control><display><type>article</type><title>Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Edholm, Eva-Stina ; Albertorio Saez, Liz-Marie ; Gill, Ann L ; Gill, Steven R ; Grayfer, Leon ; Haynes, Nikesha ; Myers, Jason R ; Robert, Jacques</creator><creatorcontrib>Edholm, Eva-Stina ; Albertorio Saez, Liz-Marie ; Gill, Ann L ; Gill, Steven R ; Grayfer, Leon ; Haynes, Nikesha ; Myers, Jason R ; Robert, Jacques</creatorcontrib><description>Human and murine MHC nonclassical class Ib-restricted invariant T (iT) cell subsets, such as invariant natural killer T cells (iNKT) and mucosal-associated invariant T cells, have specialized functions early in immune responses, especially in modulating subsequent adaptive immune responses. Here, we characterize a prominent iT population in the amphibian Xenopus laevis and show the requirement of the class Ib molecule, Xenopus nonclassical gene 10, in its differentiation and function. Using Xenopus nonclassical gene 10 tetramers and RNAi loss of function by transgenesis, we identified a large class Ib-dependent CD8 ⁻/CD4 ⁻ iT subset in unmanipulated frogs and tadpoles. This population is critical for antiviral immunity during early larval stages when classical MHC class Ia function is suboptimal. Furthermore, in young tadpoles with low class Ia expression, deep sequencing revealed additional preponderant invariant T cell receptor (TCR)α rearrangements, implying other iT cell subsets and a predominant selection process mediated by other class Ib molecules. The restriction and requirement of class Ib molecules for development and antiviral immunity of a mammalian iNKT or mucosal-associated invariant T cell counterpart in the amphibian Xenopus show the importance of iT cells in the emergence and evolution of the adaptive immune system.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1309840110</identifier><identifier>PMID: 23940320</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptive Immunity ; Animals ; Biological Sciences ; Cell Differentiation ; Evolution ; Histocompatibility Antigens Class I ; Immune system ; Molecules ; Reptiles & amphibians ; T cell receptors ; T-Lymphocytes - cytology ; T-Lymphocytes - immunology ; Xenopus - embryology ; Xenopus - immunology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-08, Vol.110 (35), p.14342-14347</ispartof><rights>Copyright National Academy of Sciences Aug 27, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-f855dbfc5a223d3690d856cb4b070dcc54b3a7c4a1c7a1a6cdc2da5d757debe53</citedby><cites>FETCH-LOGICAL-c470t-f855dbfc5a223d3690d856cb4b070dcc54b3a7c4a1c7a1a6cdc2da5d757debe53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/35.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761575/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761575/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23940320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Edholm, Eva-Stina</creatorcontrib><creatorcontrib>Albertorio Saez, Liz-Marie</creatorcontrib><creatorcontrib>Gill, Ann L</creatorcontrib><creatorcontrib>Gill, Steven R</creatorcontrib><creatorcontrib>Grayfer, Leon</creatorcontrib><creatorcontrib>Haynes, Nikesha</creatorcontrib><creatorcontrib>Myers, Jason R</creatorcontrib><creatorcontrib>Robert, Jacques</creatorcontrib><title>Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Human and murine MHC nonclassical class Ib-restricted invariant T (iT) cell subsets, such as invariant natural killer T cells (iNKT) and mucosal-associated invariant T cells, have specialized functions early in immune responses, especially in modulating subsequent adaptive immune responses. Here, we characterize a prominent iT population in the amphibian Xenopus laevis and show the requirement of the class Ib molecule, Xenopus nonclassical gene 10, in its differentiation and function. Using Xenopus nonclassical gene 10 tetramers and RNAi loss of function by transgenesis, we identified a large class Ib-dependent CD8 ⁻/CD4 ⁻ iT subset in unmanipulated frogs and tadpoles. This population is critical for antiviral immunity during early larval stages when classical MHC class Ia function is suboptimal. Furthermore, in young tadpoles with low class Ia expression, deep sequencing revealed additional preponderant invariant T cell receptor (TCR)α rearrangements, implying other iT cell subsets and a predominant selection process mediated by other class Ib molecules. The restriction and requirement of class Ib molecules for development and antiviral immunity of a mammalian iNKT or mucosal-associated invariant T cell counterpart in the amphibian Xenopus show the importance of iT cells in the emergence and evolution of the adaptive immune system.</description><subject>Adaptive Immunity</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell Differentiation</subject><subject>Evolution</subject><subject>Histocompatibility Antigens Class I</subject><subject>Immune system</subject><subject>Molecules</subject><subject>Reptiles & amphibians</subject><subject>T cell receptors</subject><subject>T-Lymphocytes - cytology</subject><subject>T-Lymphocytes - immunology</subject><subject>Xenopus - embryology</subject><subject>Xenopus - immunology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxSMEokvhzA0sceGSdvwVJxcktAJaqcCB9mxNbKd1ldjB3l2pd_5wHHZZPk4ea37vecavql5SOKOg-PkcMJ9RDl0rgFJ4VK0odLRuRAePqxUAU3UrmDipnuV8DwCdbOFpdcJ4J4AzWFU_vsRgRszZGxzJ54s1-XUjl7V1swvWhQ3xYYfJY6muiXHjmAkmR9wujtuNj6H0xgdiYsgu7ZwlGCyZU5x8WMRDqYjDVBDrdm6M87T3JDjNd74vvvl59WTAMbsXh_O0uvn44Xp9UV99_XS5fn9VG6FgUw-tlLYfjETGuOVNB7aVjelFDwqsMVL0HJURSI1Cio2xhlmUVkllXe8kP63e7X3nbT85a8ogCUc9Jz9hetARvf63E_ydvo07zVVDpVoM3h4MUvy-dXmjJ5-XL8Hg4jZrKlirFBcSCvrmP_Q-blMo6y1Ux5oGJC3U-Z4yKeac3HAchoJeEtZLwvpPwkXx6u8djvzvSAtADsCiPNoVPy7L01ywgrzeIwNGjbfJZ33zjQFtAKiAjgP_CbRxuXY</recordid><startdate>20130827</startdate><enddate>20130827</enddate><creator>Edholm, Eva-Stina</creator><creator>Albertorio Saez, Liz-Marie</creator><creator>Gill, Ann L</creator><creator>Gill, Steven R</creator><creator>Grayfer, Leon</creator><creator>Haynes, Nikesha</creator><creator>Myers, Jason R</creator><creator>Robert, Jacques</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130827</creationdate><title>Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians</title><author>Edholm, Eva-Stina ; Albertorio Saez, Liz-Marie ; Gill, Ann L ; Gill, Steven R ; Grayfer, Leon ; Haynes, Nikesha ; Myers, Jason R ; Robert, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-f855dbfc5a223d3690d856cb4b070dcc54b3a7c4a1c7a1a6cdc2da5d757debe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptive Immunity</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell Differentiation</topic><topic>Evolution</topic><topic>Histocompatibility Antigens Class I</topic><topic>Immune system</topic><topic>Molecules</topic><topic>Reptiles & amphibians</topic><topic>T cell receptors</topic><topic>T-Lymphocytes - cytology</topic><topic>T-Lymphocytes - immunology</topic><topic>Xenopus - embryology</topic><topic>Xenopus - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edholm, Eva-Stina</creatorcontrib><creatorcontrib>Albertorio Saez, Liz-Marie</creatorcontrib><creatorcontrib>Gill, Ann L</creatorcontrib><creatorcontrib>Gill, Steven R</creatorcontrib><creatorcontrib>Grayfer, Leon</creatorcontrib><creatorcontrib>Haynes, Nikesha</creatorcontrib><creatorcontrib>Myers, Jason R</creatorcontrib><creatorcontrib>Robert, Jacques</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edholm, Eva-Stina</au><au>Albertorio Saez, Liz-Marie</au><au>Gill, Ann L</au><au>Gill, Steven R</au><au>Grayfer, Leon</au><au>Haynes, Nikesha</au><au>Myers, Jason R</au><au>Robert, Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-08-27</date><risdate>2013</risdate><volume>110</volume><issue>35</issue><spage>14342</spage><epage>14347</epage><pages>14342-14347</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Human and murine MHC nonclassical class Ib-restricted invariant T (iT) cell subsets, such as invariant natural killer T cells (iNKT) and mucosal-associated invariant T cells, have specialized functions early in immune responses, especially in modulating subsequent adaptive immune responses. Here, we characterize a prominent iT population in the amphibian Xenopus laevis and show the requirement of the class Ib molecule, Xenopus nonclassical gene 10, in its differentiation and function. Using Xenopus nonclassical gene 10 tetramers and RNAi loss of function by transgenesis, we identified a large class Ib-dependent CD8 ⁻/CD4 ⁻ iT subset in unmanipulated frogs and tadpoles. This population is critical for antiviral immunity during early larval stages when classical MHC class Ia function is suboptimal. Furthermore, in young tadpoles with low class Ia expression, deep sequencing revealed additional preponderant invariant T cell receptor (TCR)α rearrangements, implying other iT cell subsets and a predominant selection process mediated by other class Ib molecules. The restriction and requirement of class Ib molecules for development and antiviral immunity of a mammalian iNKT or mucosal-associated invariant T cell counterpart in the amphibian Xenopus show the importance of iT cells in the emergence and evolution of the adaptive immune system.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23940320</pmid><doi>10.1073/pnas.1309840110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-08, Vol.110 (35), p.14342-14347 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1309840110 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adaptive Immunity Animals Biological Sciences Cell Differentiation Evolution Histocompatibility Antigens Class I Immune system Molecules Reptiles & amphibians T cell receptors T-Lymphocytes - cytology T-Lymphocytes - immunology Xenopus - embryology Xenopus - immunology |
title | Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonclassical%20MHC%20class%20I-dependent%20invariant%20T%20cells%20are%20evolutionarily%20conserved%20and%20prominent%20from%20early%20development%20in%20amphibians&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Edholm,%20Eva-Stina&rft.date=2013-08-27&rft.volume=110&rft.issue=35&rft.spage=14342&rft.epage=14347&rft.pages=14342-14347&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1309840110&rft_dat=%3Cproquest_cross%3E3060566321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429266051&rft_id=info:pmid/23940320&rfr_iscdi=true |