Islet amyloid polypeptide toxicity and membrane interactions

Islet amyloid polypeptide (IAPP) is responsible for amyloid formation in type 2 diabetes and contributes to the failure of islet cell transplants, however the mechanisms of IAPP-induced cytotoxicity are not known. Interactions with model anionic membranes are known to catalyze IAPP amyloid formation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-11, Vol.110 (48), p.19279-19284
Hauptverfasser: Cao, Ping, Abedini, Andisheh, Wang, Hui, Tu, Ling-Hsien, Zhang, Xiaoxue, Schmidt, Ann Marie, Raleigh, Daniel P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19284
container_issue 48
container_start_page 19279
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Cao, Ping
Abedini, Andisheh
Wang, Hui
Tu, Ling-Hsien
Zhang, Xiaoxue
Schmidt, Ann Marie
Raleigh, Daniel P.
description Islet amyloid polypeptide (IAPP) is responsible for amyloid formation in type 2 diabetes and contributes to the failure of islet cell transplants, however the mechanisms of IAPP-induced cytotoxicity are not known. Interactions with model anionic membranes are known to catalyze IAPP amyloid formation in vitro. Human IAPP damages anionic membranes, promoting vesicle leakage, but the features that control IAPP—membrane interactions and the connection with cellular toxicity are not clear. Kinetic studies with wild-type IAPP and IAPP mutants demonstrate that membrane leakage is induced by prefibrillar IAPP species and continues over the course of amyloid formation, correlating additional membrane disruption with fibril growth. Analyses of a set of designed mutants reveal that membrane leakage does not require the formation of β-sheet or α-helical structures. A His-18 to Arg substitution enhances leakage, whereas replacement of all of the aromatic residues via a triple leucine mutant has no effect. Biophysical measurements in conjunction with cytotoxicity studies show that nonamyloidogenic rat IAPP is as effective as human IAPP at disrupting standard anionic model membranes under conditions where rat IAPP does not induce cellular toxicity. Similar results are obtained with more complex model membranes, including ternary systems that contain cholesterol and are capable of forming lipid rafts. A designed point mutant, I26P-IAPP; a designed double mutant, G24P, I26P-IAPP; a double N-methylated variant; and pramlintide, a US Food and Drug Administration—approved IAPP variant all induce membrane leakage, but are not cytotoxic, showing that there is no one-to-one relationship between disruption of model membranes and induction of cellular toxicity.
doi_str_mv 10.1073/pnas.1305517110
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1305517110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23757250</jstor_id><sourcerecordid>23757250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-b56269db8d80af2dc64c0e4ccc0c8960729d1e3ebeed758da8d4a9711d71f3c63</originalsourceid><addsrcrecordid>eNqNkUuLFDEURoMoTtu6dqUUuHFTM_fmVSkQQQYfAwNudB1SSVrTVFXKJD3Y_9403faoKzfJIuce7pePkOcIlwgdu1pmky-RgRDYIcIDskLosZW8h4dkBUC7VnHKL8iTnLcA0AsFj8kF5RSVhG5F3tzk0ZfGTPsxBtcscdwvfinB-abEn8GGsm_M7JrJT0Mys2_CXHwytoQ456fk0caM2T873Wvy9cP7L9ef2tvPH2-u3922VgKUdhCSyt4NyikwG-qs5BY8t9aCVX1dg_YOPfOD964TyhnluOlrHtfhhlnJ1uTt0bvshsk76-eSzKiXFCaT9jqaoP9-mcN3_S3eaaa4QIVV8PokSPHHzueip5CtH8eaKO6yRgUMKRX8P1CBlDGh6rEmr_5Bt3GX5voTGrmUyJhkqlJXR8qmmHPym_PeCPpQoj6UqO9LrBMv_4x75n-3VoHmBBwmz7rq40pjT7u-Ii-OyDaXmO4VrBMdFcB-Adj2rMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466133638</pqid></control><display><type>article</type><title>Islet amyloid polypeptide toxicity and membrane interactions</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cao, Ping ; Abedini, Andisheh ; Wang, Hui ; Tu, Ling-Hsien ; Zhang, Xiaoxue ; Schmidt, Ann Marie ; Raleigh, Daniel P.</creator><creatorcontrib>Cao, Ping ; Abedini, Andisheh ; Wang, Hui ; Tu, Ling-Hsien ; Zhang, Xiaoxue ; Schmidt, Ann Marie ; Raleigh, Daniel P.</creatorcontrib><description>Islet amyloid polypeptide (IAPP) is responsible for amyloid formation in type 2 diabetes and contributes to the failure of islet cell transplants, however the mechanisms of IAPP-induced cytotoxicity are not known. Interactions with model anionic membranes are known to catalyze IAPP amyloid formation in vitro. Human IAPP damages anionic membranes, promoting vesicle leakage, but the features that control IAPP—membrane interactions and the connection with cellular toxicity are not clear. Kinetic studies with wild-type IAPP and IAPP mutants demonstrate that membrane leakage is induced by prefibrillar IAPP species and continues over the course of amyloid formation, correlating additional membrane disruption with fibril growth. Analyses of a set of designed mutants reveal that membrane leakage does not require the formation of β-sheet or α-helical structures. A His-18 to Arg substitution enhances leakage, whereas replacement of all of the aromatic residues via a triple leucine mutant has no effect. Biophysical measurements in conjunction with cytotoxicity studies show that nonamyloidogenic rat IAPP is as effective as human IAPP at disrupting standard anionic model membranes under conditions where rat IAPP does not induce cellular toxicity. Similar results are obtained with more complex model membranes, including ternary systems that contain cholesterol and are capable of forming lipid rafts. A designed point mutant, I26P-IAPP; a designed double mutant, G24P, I26P-IAPP; a double N-methylated variant; and pramlintide, a US Food and Drug Administration—approved IAPP variant all induce membrane leakage, but are not cytotoxic, showing that there is no one-to-one relationship between disruption of model membranes and induction of cellular toxicity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1305517110</identifier><identifier>PMID: 24218607</identifier><language>eng</language><publisher>United States: NATIONAL ACADEMY OF SCIENCES</publisher><subject>Amino Acid Sequence ; amyloid ; Amyloid - biosynthesis ; Amyloids ; Animals ; Biophysics ; Cell membranes ; cholesterol ; Cholesterols ; Cytotoxicity ; Diabetes ; Diabetes Mellitus, Type 2 - physiopathology ; Humans ; Islet Amyloid Polypeptide - metabolism ; Islet cells ; leucine ; Lipids ; Membranes ; Membranes, Artificial ; Microscopy, Electron, Transmission ; Molecular Sequence Data ; mutants ; noninsulin-dependent diabetes mellitus ; Oxazines ; P branes ; Physical Sciences ; Polypeptides ; Rats ; Research design ; Solar fibrils ; Species Specificity ; String theory ; Thiazoles ; Transplants &amp; implants ; Xanthenes</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-11, Vol.110 (48), p.19279-19284</ispartof><rights>copyright © 1993—2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 26, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-b56269db8d80af2dc64c0e4ccc0c8960729d1e3ebeed758da8d4a9711d71f3c63</citedby><cites>FETCH-LOGICAL-c600t-b56269db8d80af2dc64c0e4ccc0c8960729d1e3ebeed758da8d4a9711d71f3c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/48.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23757250$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23757250$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24218607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Ping</creatorcontrib><creatorcontrib>Abedini, Andisheh</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Tu, Ling-Hsien</creatorcontrib><creatorcontrib>Zhang, Xiaoxue</creatorcontrib><creatorcontrib>Schmidt, Ann Marie</creatorcontrib><creatorcontrib>Raleigh, Daniel P.</creatorcontrib><title>Islet amyloid polypeptide toxicity and membrane interactions</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Islet amyloid polypeptide (IAPP) is responsible for amyloid formation in type 2 diabetes and contributes to the failure of islet cell transplants, however the mechanisms of IAPP-induced cytotoxicity are not known. Interactions with model anionic membranes are known to catalyze IAPP amyloid formation in vitro. Human IAPP damages anionic membranes, promoting vesicle leakage, but the features that control IAPP—membrane interactions and the connection with cellular toxicity are not clear. Kinetic studies with wild-type IAPP and IAPP mutants demonstrate that membrane leakage is induced by prefibrillar IAPP species and continues over the course of amyloid formation, correlating additional membrane disruption with fibril growth. Analyses of a set of designed mutants reveal that membrane leakage does not require the formation of β-sheet or α-helical structures. A His-18 to Arg substitution enhances leakage, whereas replacement of all of the aromatic residues via a triple leucine mutant has no effect. Biophysical measurements in conjunction with cytotoxicity studies show that nonamyloidogenic rat IAPP is as effective as human IAPP at disrupting standard anionic model membranes under conditions where rat IAPP does not induce cellular toxicity. Similar results are obtained with more complex model membranes, including ternary systems that contain cholesterol and are capable of forming lipid rafts. A designed point mutant, I26P-IAPP; a designed double mutant, G24P, I26P-IAPP; a double N-methylated variant; and pramlintide, a US Food and Drug Administration—approved IAPP variant all induce membrane leakage, but are not cytotoxic, showing that there is no one-to-one relationship between disruption of model membranes and induction of cellular toxicity.</description><subject>Amino Acid Sequence</subject><subject>amyloid</subject><subject>Amyloid - biosynthesis</subject><subject>Amyloids</subject><subject>Animals</subject><subject>Biophysics</subject><subject>Cell membranes</subject><subject>cholesterol</subject><subject>Cholesterols</subject><subject>Cytotoxicity</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2 - physiopathology</subject><subject>Humans</subject><subject>Islet Amyloid Polypeptide - metabolism</subject><subject>Islet cells</subject><subject>leucine</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Microscopy, Electron, Transmission</subject><subject>Molecular Sequence Data</subject><subject>mutants</subject><subject>noninsulin-dependent diabetes mellitus</subject><subject>Oxazines</subject><subject>P branes</subject><subject>Physical Sciences</subject><subject>Polypeptides</subject><subject>Rats</subject><subject>Research design</subject><subject>Solar fibrils</subject><subject>Species Specificity</subject><subject>String theory</subject><subject>Thiazoles</subject><subject>Transplants &amp; implants</subject><subject>Xanthenes</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUuLFDEURoMoTtu6dqUUuHFTM_fmVSkQQQYfAwNudB1SSVrTVFXKJD3Y_9403faoKzfJIuce7pePkOcIlwgdu1pmky-RgRDYIcIDskLosZW8h4dkBUC7VnHKL8iTnLcA0AsFj8kF5RSVhG5F3tzk0ZfGTPsxBtcscdwvfinB-abEn8GGsm_M7JrJT0Mys2_CXHwytoQ456fk0caM2T873Wvy9cP7L9ef2tvPH2-u3922VgKUdhCSyt4NyikwG-qs5BY8t9aCVX1dg_YOPfOD964TyhnluOlrHtfhhlnJ1uTt0bvshsk76-eSzKiXFCaT9jqaoP9-mcN3_S3eaaa4QIVV8PokSPHHzueip5CtH8eaKO6yRgUMKRX8P1CBlDGh6rEmr_5Bt3GX5voTGrmUyJhkqlJXR8qmmHPym_PeCPpQoj6UqO9LrBMv_4x75n-3VoHmBBwmz7rq40pjT7u-Ii-OyDaXmO4VrBMdFcB-Adj2rMA</recordid><startdate>20131126</startdate><enddate>20131126</enddate><creator>Cao, Ping</creator><creator>Abedini, Andisheh</creator><creator>Wang, Hui</creator><creator>Tu, Ling-Hsien</creator><creator>Zhang, Xiaoxue</creator><creator>Schmidt, Ann Marie</creator><creator>Raleigh, Daniel P.</creator><general>NATIONAL ACADEMY OF SCIENCES</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7U7</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131126</creationdate><title>Islet amyloid polypeptide toxicity and membrane interactions</title><author>Cao, Ping ; Abedini, Andisheh ; Wang, Hui ; Tu, Ling-Hsien ; Zhang, Xiaoxue ; Schmidt, Ann Marie ; Raleigh, Daniel P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-b56269db8d80af2dc64c0e4ccc0c8960729d1e3ebeed758da8d4a9711d71f3c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>amyloid</topic><topic>Amyloid - biosynthesis</topic><topic>Amyloids</topic><topic>Animals</topic><topic>Biophysics</topic><topic>Cell membranes</topic><topic>cholesterol</topic><topic>Cholesterols</topic><topic>Cytotoxicity</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2 - physiopathology</topic><topic>Humans</topic><topic>Islet Amyloid Polypeptide - metabolism</topic><topic>Islet cells</topic><topic>leucine</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Microscopy, Electron, Transmission</topic><topic>Molecular Sequence Data</topic><topic>mutants</topic><topic>noninsulin-dependent diabetes mellitus</topic><topic>Oxazines</topic><topic>P branes</topic><topic>Physical Sciences</topic><topic>Polypeptides</topic><topic>Rats</topic><topic>Research design</topic><topic>Solar fibrils</topic><topic>Species Specificity</topic><topic>String theory</topic><topic>Thiazoles</topic><topic>Transplants &amp; implants</topic><topic>Xanthenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Ping</creatorcontrib><creatorcontrib>Abedini, Andisheh</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Tu, Ling-Hsien</creatorcontrib><creatorcontrib>Zhang, Xiaoxue</creatorcontrib><creatorcontrib>Schmidt, Ann Marie</creatorcontrib><creatorcontrib>Raleigh, Daniel P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Toxicology Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Ping</au><au>Abedini, Andisheh</au><au>Wang, Hui</au><au>Tu, Ling-Hsien</au><au>Zhang, Xiaoxue</au><au>Schmidt, Ann Marie</au><au>Raleigh, Daniel P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Islet amyloid polypeptide toxicity and membrane interactions</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-11-26</date><risdate>2013</risdate><volume>110</volume><issue>48</issue><spage>19279</spage><epage>19284</epage><pages>19279-19284</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Islet amyloid polypeptide (IAPP) is responsible for amyloid formation in type 2 diabetes and contributes to the failure of islet cell transplants, however the mechanisms of IAPP-induced cytotoxicity are not known. Interactions with model anionic membranes are known to catalyze IAPP amyloid formation in vitro. Human IAPP damages anionic membranes, promoting vesicle leakage, but the features that control IAPP—membrane interactions and the connection with cellular toxicity are not clear. Kinetic studies with wild-type IAPP and IAPP mutants demonstrate that membrane leakage is induced by prefibrillar IAPP species and continues over the course of amyloid formation, correlating additional membrane disruption with fibril growth. Analyses of a set of designed mutants reveal that membrane leakage does not require the formation of β-sheet or α-helical structures. A His-18 to Arg substitution enhances leakage, whereas replacement of all of the aromatic residues via a triple leucine mutant has no effect. Biophysical measurements in conjunction with cytotoxicity studies show that nonamyloidogenic rat IAPP is as effective as human IAPP at disrupting standard anionic model membranes under conditions where rat IAPP does not induce cellular toxicity. Similar results are obtained with more complex model membranes, including ternary systems that contain cholesterol and are capable of forming lipid rafts. A designed point mutant, I26P-IAPP; a designed double mutant, G24P, I26P-IAPP; a double N-methylated variant; and pramlintide, a US Food and Drug Administration—approved IAPP variant all induce membrane leakage, but are not cytotoxic, showing that there is no one-to-one relationship between disruption of model membranes and induction of cellular toxicity.</abstract><cop>United States</cop><pub>NATIONAL ACADEMY OF SCIENCES</pub><pmid>24218607</pmid><doi>10.1073/pnas.1305517110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-11, Vol.110 (48), p.19279-19284
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1305517110
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
amyloid
Amyloid - biosynthesis
Amyloids
Animals
Biophysics
Cell membranes
cholesterol
Cholesterols
Cytotoxicity
Diabetes
Diabetes Mellitus, Type 2 - physiopathology
Humans
Islet Amyloid Polypeptide - metabolism
Islet cells
leucine
Lipids
Membranes
Membranes, Artificial
Microscopy, Electron, Transmission
Molecular Sequence Data
mutants
noninsulin-dependent diabetes mellitus
Oxazines
P branes
Physical Sciences
Polypeptides
Rats
Research design
Solar fibrils
Species Specificity
String theory
Thiazoles
Transplants & implants
Xanthenes
title Islet amyloid polypeptide toxicity and membrane interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Islet%20amyloid%20polypeptide%20toxicity%20and%20membrane%20interactions&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cao,%20Ping&rft.date=2013-11-26&rft.volume=110&rft.issue=48&rft.spage=19279&rft.epage=19284&rft.pages=19279-19284&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1305517110&rft_dat=%3Cjstor_cross%3E23757250%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1466133638&rft_id=info:pmid/24218607&rft_jstor_id=23757250&rfr_iscdi=true