Oxidation of nanoscale Au–In alloy particles as a possible route toward stable Au-based catalysts

The oxidation of bimetallic alloy nanoparticles comprising a noble and a nonnoble metal is expected to cause the formation of a single-component surface oxide of the nonnoble metal, surrounding a core enriched with the noble metal. Studying the room temperature oxidation of Au–In nanoparticles, we s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-06, Vol.110 (26), p.10519-10524
Hauptverfasser: Sutter, Eli A., Tong, Xiao, Jungjohann, Katherine, Sutter, Peter W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10524
container_issue 26
container_start_page 10519
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Sutter, Eli A.
Tong, Xiao
Jungjohann, Katherine
Sutter, Peter W.
description The oxidation of bimetallic alloy nanoparticles comprising a noble and a nonnoble metal is expected to cause the formation of a single-component surface oxide of the nonnoble metal, surrounding a core enriched with the noble metal. Studying the room temperature oxidation of Au–In nanoparticles, we show that this simple picture does not apply to an important class of bimetallic alloys, in which the oxidation proceeds via predominant oxygen diffusion. Instead of a crystalline In ₂O ₃ shell, such oxidation leads to an amorphous shell of mixed Au–In oxide that remains stable to high temperatures and whose surface layer is enriched with Au. The Au-rich mixed oxide is capable of adsorbing both CO and O ₂ and converting them to CO ₂, which desorbs near room temperature. The oxidation of Au–In alloys to a mixed Au–In oxide shows significant promise as a viable approach toward Au-based oxidation catalysts, which do not require any complex synthesis processes and resist deactivation up to at least 300 °C.
doi_str_mv 10.1073/pnas.1305388110
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1305388110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42706515</jstor_id><sourcerecordid>42706515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-fd494bd2cc9899d2b07a243c80f72d2a61bdcbaa9f8b44d8de9c65c94456a5e33</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEokNhzQqwxIZN2utHnHhTqap4VKrUBXRt3dhOySgTB9sBZsd_4B_yS3A6w_DYIFny4n7n6N5ziuIphRMKNT-dRownlEPFm4ZSuFesKChaSqHgfrECYHXZCCaOikcxrgFAVQ08LI4YryshKFsV5vprbzH1fiS-IyOOPhocHDmff3z7fjkSHAa_JROG1JvBRYL5kcnH2LeZCn5OjiT_BYMlMWF7pyxbjM4SgwmHbUzxcfGgwyG6J_v_uLh58_rDxbvy6vrt5cX5VWkqRVPZWaFEa5kxqlHKshZqZIKbBrqaWYaStta0iKprWiFsY50ysjJKiEpi5Tg_Ls52vtPcbpw1bkwBBz2FfoNhqz32-u_J2H_Ut_6z5lLJulkMXu0Ngv80u5j0po_GDQOOzs9R0wZ4zjeH93-U1wxqJYBl9OU_6NrPYcxJ3FFCSibqTJ3uKBNyusF1h70p6KVrvXStf3edFc__PPfA_yo3A2QPLMqDXfZjMltWVGXk2Q5Zx-TDgRGsBlnR5cwXu3mHXuNt6KO-ec-ASoC8u1KU_wRYq8RW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372466247</pqid></control><display><type>article</type><title>Oxidation of nanoscale Au–In alloy particles as a possible route toward stable Au-based catalysts</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sutter, Eli A. ; Tong, Xiao ; Jungjohann, Katherine ; Sutter, Peter W.</creator><creatorcontrib>Sutter, Eli A. ; Tong, Xiao ; Jungjohann, Katherine ; Sutter, Peter W.</creatorcontrib><description>The oxidation of bimetallic alloy nanoparticles comprising a noble and a nonnoble metal is expected to cause the formation of a single-component surface oxide of the nonnoble metal, surrounding a core enriched with the noble metal. Studying the room temperature oxidation of Au–In nanoparticles, we show that this simple picture does not apply to an important class of bimetallic alloys, in which the oxidation proceeds via predominant oxygen diffusion. Instead of a crystalline In ₂O ₃ shell, such oxidation leads to an amorphous shell of mixed Au–In oxide that remains stable to high temperatures and whose surface layer is enriched with Au. The Au-rich mixed oxide is capable of adsorbing both CO and O ₂ and converting them to CO ₂, which desorbs near room temperature. The oxidation of Au–In alloys to a mixed Au–In oxide shows significant promise as a viable approach toward Au-based oxidation catalysts, which do not require any complex synthesis processes and resist deactivation up to at least 300 °C.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1305388110</identifier><identifier>PMID: 23754412</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alloys ; ambient temperature ; Catalysis ; Catalysts ; Crystals ; gold ; Metal particles ; Nanoparticles ; Noble metals ; Oxidation ; Oxides ; Oxygen ; Physical Sciences ; Room temperature</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-06, Vol.110 (26), p.10519-10524</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 25, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-fd494bd2cc9899d2b07a243c80f72d2a61bdcbaa9f8b44d8de9c65c94456a5e33</citedby><cites>FETCH-LOGICAL-c591t-fd494bd2cc9899d2b07a243c80f72d2a61bdcbaa9f8b44d8de9c65c94456a5e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/26.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42706515$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42706515$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23754412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sutter, Eli A.</creatorcontrib><creatorcontrib>Tong, Xiao</creatorcontrib><creatorcontrib>Jungjohann, Katherine</creatorcontrib><creatorcontrib>Sutter, Peter W.</creatorcontrib><title>Oxidation of nanoscale Au–In alloy particles as a possible route toward stable Au-based catalysts</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The oxidation of bimetallic alloy nanoparticles comprising a noble and a nonnoble metal is expected to cause the formation of a single-component surface oxide of the nonnoble metal, surrounding a core enriched with the noble metal. Studying the room temperature oxidation of Au–In nanoparticles, we show that this simple picture does not apply to an important class of bimetallic alloys, in which the oxidation proceeds via predominant oxygen diffusion. Instead of a crystalline In ₂O ₃ shell, such oxidation leads to an amorphous shell of mixed Au–In oxide that remains stable to high temperatures and whose surface layer is enriched with Au. The Au-rich mixed oxide is capable of adsorbing both CO and O ₂ and converting them to CO ₂, which desorbs near room temperature. The oxidation of Au–In alloys to a mixed Au–In oxide shows significant promise as a viable approach toward Au-based oxidation catalysts, which do not require any complex synthesis processes and resist deactivation up to at least 300 °C.</description><subject>Alloys</subject><subject>ambient temperature</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Crystals</subject><subject>gold</subject><subject>Metal particles</subject><subject>Nanoparticles</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>Physical Sciences</subject><subject>Room temperature</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhSMEokNhzQqwxIZN2utHnHhTqap4VKrUBXRt3dhOySgTB9sBZsd_4B_yS3A6w_DYIFny4n7n6N5ziuIphRMKNT-dRownlEPFm4ZSuFesKChaSqHgfrECYHXZCCaOikcxrgFAVQ08LI4YryshKFsV5vprbzH1fiS-IyOOPhocHDmff3z7fjkSHAa_JROG1JvBRYL5kcnH2LeZCn5OjiT_BYMlMWF7pyxbjM4SgwmHbUzxcfGgwyG6J_v_uLh58_rDxbvy6vrt5cX5VWkqRVPZWaFEa5kxqlHKshZqZIKbBrqaWYaStta0iKprWiFsY50ysjJKiEpi5Tg_Ls52vtPcbpw1bkwBBz2FfoNhqz32-u_J2H_Ut_6z5lLJulkMXu0Ngv80u5j0po_GDQOOzs9R0wZ4zjeH93-U1wxqJYBl9OU_6NrPYcxJ3FFCSibqTJ3uKBNyusF1h70p6KVrvXStf3edFc__PPfA_yo3A2QPLMqDXfZjMltWVGXk2Q5Zx-TDgRGsBlnR5cwXu3mHXuNt6KO-ec-ASoC8u1KU_wRYq8RW</recordid><startdate>20130625</startdate><enddate>20130625</enddate><creator>Sutter, Eli A.</creator><creator>Tong, Xiao</creator><creator>Jungjohann, Katherine</creator><creator>Sutter, Peter W.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130625</creationdate><title>Oxidation of nanoscale Au–In alloy particles as a possible route toward stable Au-based catalysts</title><author>Sutter, Eli A. ; Tong, Xiao ; Jungjohann, Katherine ; Sutter, Peter W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-fd494bd2cc9899d2b07a243c80f72d2a61bdcbaa9f8b44d8de9c65c94456a5e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alloys</topic><topic>ambient temperature</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Crystals</topic><topic>gold</topic><topic>Metal particles</topic><topic>Nanoparticles</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>Physical Sciences</topic><topic>Room temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sutter, Eli A.</creatorcontrib><creatorcontrib>Tong, Xiao</creatorcontrib><creatorcontrib>Jungjohann, Katherine</creatorcontrib><creatorcontrib>Sutter, Peter W.</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sutter, Eli A.</au><au>Tong, Xiao</au><au>Jungjohann, Katherine</au><au>Sutter, Peter W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation of nanoscale Au–In alloy particles as a possible route toward stable Au-based catalysts</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-06-25</date><risdate>2013</risdate><volume>110</volume><issue>26</issue><spage>10519</spage><epage>10524</epage><pages>10519-10524</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The oxidation of bimetallic alloy nanoparticles comprising a noble and a nonnoble metal is expected to cause the formation of a single-component surface oxide of the nonnoble metal, surrounding a core enriched with the noble metal. Studying the room temperature oxidation of Au–In nanoparticles, we show that this simple picture does not apply to an important class of bimetallic alloys, in which the oxidation proceeds via predominant oxygen diffusion. Instead of a crystalline In ₂O ₃ shell, such oxidation leads to an amorphous shell of mixed Au–In oxide that remains stable to high temperatures and whose surface layer is enriched with Au. The Au-rich mixed oxide is capable of adsorbing both CO and O ₂ and converting them to CO ₂, which desorbs near room temperature. The oxidation of Au–In alloys to a mixed Au–In oxide shows significant promise as a viable approach toward Au-based oxidation catalysts, which do not require any complex synthesis processes and resist deactivation up to at least 300 °C.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23754412</pmid><doi>10.1073/pnas.1305388110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-06, Vol.110 (26), p.10519-10524
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1305388110
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alloys
ambient temperature
Catalysis
Catalysts
Crystals
gold
Metal particles
Nanoparticles
Noble metals
Oxidation
Oxides
Oxygen
Physical Sciences
Room temperature
title Oxidation of nanoscale Au–In alloy particles as a possible route toward stable Au-based catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20of%20nanoscale%20Au%E2%80%93In%20alloy%20particles%20as%20a%20possible%20route%20toward%20stable%20Au-based%20catalysts&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sutter,%20Eli%20A.&rft.date=2013-06-25&rft.volume=110&rft.issue=26&rft.spage=10519&rft.epage=10524&rft.pages=10519-10524&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1305388110&rft_dat=%3Cjstor_cross%3E42706515%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372466247&rft_id=info:pmid/23754412&rft_jstor_id=42706515&rfr_iscdi=true