Oxidation of nanoscale Au–In alloy particles as a possible route toward stable Au-based catalysts
The oxidation of bimetallic alloy nanoparticles comprising a noble and a nonnoble metal is expected to cause the formation of a single-component surface oxide of the nonnoble metal, surrounding a core enriched with the noble metal. Studying the room temperature oxidation of Au–In nanoparticles, we s...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-06, Vol.110 (26), p.10519-10524 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10524 |
---|---|
container_issue | 26 |
container_start_page | 10519 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Sutter, Eli A. Tong, Xiao Jungjohann, Katherine Sutter, Peter W. |
description | The oxidation of bimetallic alloy nanoparticles comprising a noble and a nonnoble metal is expected to cause the formation of a single-component surface oxide of the nonnoble metal, surrounding a core enriched with the noble metal. Studying the room temperature oxidation of Au–In nanoparticles, we show that this simple picture does not apply to an important class of bimetallic alloys, in which the oxidation proceeds via predominant oxygen diffusion. Instead of a crystalline In ₂O ₃ shell, such oxidation leads to an amorphous shell of mixed Au–In oxide that remains stable to high temperatures and whose surface layer is enriched with Au. The Au-rich mixed oxide is capable of adsorbing both CO and O ₂ and converting them to CO ₂, which desorbs near room temperature. The oxidation of Au–In alloys to a mixed Au–In oxide shows significant promise as a viable approach toward Au-based oxidation catalysts, which do not require any complex synthesis processes and resist deactivation up to at least 300 °C. |
doi_str_mv | 10.1073/pnas.1305388110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1305388110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42706515</jstor_id><sourcerecordid>42706515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-fd494bd2cc9899d2b07a243c80f72d2a61bdcbaa9f8b44d8de9c65c94456a5e33</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEokNhzQqwxIZN2utHnHhTqap4VKrUBXRt3dhOySgTB9sBZsd_4B_yS3A6w_DYIFny4n7n6N5ziuIphRMKNT-dRownlEPFm4ZSuFesKChaSqHgfrECYHXZCCaOikcxrgFAVQ08LI4YryshKFsV5vprbzH1fiS-IyOOPhocHDmff3z7fjkSHAa_JROG1JvBRYL5kcnH2LeZCn5OjiT_BYMlMWF7pyxbjM4SgwmHbUzxcfGgwyG6J_v_uLh58_rDxbvy6vrt5cX5VWkqRVPZWaFEa5kxqlHKshZqZIKbBrqaWYaStta0iKprWiFsY50ysjJKiEpi5Tg_Ls52vtPcbpw1bkwBBz2FfoNhqz32-u_J2H_Ut_6z5lLJulkMXu0Ngv80u5j0po_GDQOOzs9R0wZ4zjeH93-U1wxqJYBl9OU_6NrPYcxJ3FFCSibqTJ3uKBNyusF1h70p6KVrvXStf3edFc__PPfA_yo3A2QPLMqDXfZjMltWVGXk2Q5Zx-TDgRGsBlnR5cwXu3mHXuNt6KO-ec-ASoC8u1KU_wRYq8RW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372466247</pqid></control><display><type>article</type><title>Oxidation of nanoscale Au–In alloy particles as a possible route toward stable Au-based catalysts</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sutter, Eli A. ; Tong, Xiao ; Jungjohann, Katherine ; Sutter, Peter W.</creator><creatorcontrib>Sutter, Eli A. ; Tong, Xiao ; Jungjohann, Katherine ; Sutter, Peter W.</creatorcontrib><description>The oxidation of bimetallic alloy nanoparticles comprising a noble and a nonnoble metal is expected to cause the formation of a single-component surface oxide of the nonnoble metal, surrounding a core enriched with the noble metal. Studying the room temperature oxidation of Au–In nanoparticles, we show that this simple picture does not apply to an important class of bimetallic alloys, in which the oxidation proceeds via predominant oxygen diffusion. Instead of a crystalline In ₂O ₃ shell, such oxidation leads to an amorphous shell of mixed Au–In oxide that remains stable to high temperatures and whose surface layer is enriched with Au. The Au-rich mixed oxide is capable of adsorbing both CO and O ₂ and converting them to CO ₂, which desorbs near room temperature. The oxidation of Au–In alloys to a mixed Au–In oxide shows significant promise as a viable approach toward Au-based oxidation catalysts, which do not require any complex synthesis processes and resist deactivation up to at least 300 °C.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1305388110</identifier><identifier>PMID: 23754412</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alloys ; ambient temperature ; Catalysis ; Catalysts ; Crystals ; gold ; Metal particles ; Nanoparticles ; Noble metals ; Oxidation ; Oxides ; Oxygen ; Physical Sciences ; Room temperature</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-06, Vol.110 (26), p.10519-10524</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 25, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-fd494bd2cc9899d2b07a243c80f72d2a61bdcbaa9f8b44d8de9c65c94456a5e33</citedby><cites>FETCH-LOGICAL-c591t-fd494bd2cc9899d2b07a243c80f72d2a61bdcbaa9f8b44d8de9c65c94456a5e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/26.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42706515$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42706515$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23754412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sutter, Eli A.</creatorcontrib><creatorcontrib>Tong, Xiao</creatorcontrib><creatorcontrib>Jungjohann, Katherine</creatorcontrib><creatorcontrib>Sutter, Peter W.</creatorcontrib><title>Oxidation of nanoscale Au–In alloy particles as a possible route toward stable Au-based catalysts</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The oxidation of bimetallic alloy nanoparticles comprising a noble and a nonnoble metal is expected to cause the formation of a single-component surface oxide of the nonnoble metal, surrounding a core enriched with the noble metal. Studying the room temperature oxidation of Au–In nanoparticles, we show that this simple picture does not apply to an important class of bimetallic alloys, in which the oxidation proceeds via predominant oxygen diffusion. Instead of a crystalline In ₂O ₃ shell, such oxidation leads to an amorphous shell of mixed Au–In oxide that remains stable to high temperatures and whose surface layer is enriched with Au. The Au-rich mixed oxide is capable of adsorbing both CO and O ₂ and converting them to CO ₂, which desorbs near room temperature. The oxidation of Au–In alloys to a mixed Au–In oxide shows significant promise as a viable approach toward Au-based oxidation catalysts, which do not require any complex synthesis processes and resist deactivation up to at least 300 °C.</description><subject>Alloys</subject><subject>ambient temperature</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Crystals</subject><subject>gold</subject><subject>Metal particles</subject><subject>Nanoparticles</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>Physical Sciences</subject><subject>Room temperature</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhSMEokNhzQqwxIZN2utHnHhTqap4VKrUBXRt3dhOySgTB9sBZsd_4B_yS3A6w_DYIFny4n7n6N5ziuIphRMKNT-dRownlEPFm4ZSuFesKChaSqHgfrECYHXZCCaOikcxrgFAVQ08LI4YryshKFsV5vprbzH1fiS-IyOOPhocHDmff3z7fjkSHAa_JROG1JvBRYL5kcnH2LeZCn5OjiT_BYMlMWF7pyxbjM4SgwmHbUzxcfGgwyG6J_v_uLh58_rDxbvy6vrt5cX5VWkqRVPZWaFEa5kxqlHKshZqZIKbBrqaWYaStta0iKprWiFsY50ysjJKiEpi5Tg_Ls52vtPcbpw1bkwBBz2FfoNhqz32-u_J2H_Ut_6z5lLJulkMXu0Ngv80u5j0po_GDQOOzs9R0wZ4zjeH93-U1wxqJYBl9OU_6NrPYcxJ3FFCSibqTJ3uKBNyusF1h70p6KVrvXStf3edFc__PPfA_yo3A2QPLMqDXfZjMltWVGXk2Q5Zx-TDgRGsBlnR5cwXu3mHXuNt6KO-ec-ASoC8u1KU_wRYq8RW</recordid><startdate>20130625</startdate><enddate>20130625</enddate><creator>Sutter, Eli A.</creator><creator>Tong, Xiao</creator><creator>Jungjohann, Katherine</creator><creator>Sutter, Peter W.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130625</creationdate><title>Oxidation of nanoscale Au–In alloy particles as a possible route toward stable Au-based catalysts</title><author>Sutter, Eli A. ; Tong, Xiao ; Jungjohann, Katherine ; Sutter, Peter W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-fd494bd2cc9899d2b07a243c80f72d2a61bdcbaa9f8b44d8de9c65c94456a5e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alloys</topic><topic>ambient temperature</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Crystals</topic><topic>gold</topic><topic>Metal particles</topic><topic>Nanoparticles</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>Physical Sciences</topic><topic>Room temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sutter, Eli A.</creatorcontrib><creatorcontrib>Tong, Xiao</creatorcontrib><creatorcontrib>Jungjohann, Katherine</creatorcontrib><creatorcontrib>Sutter, Peter W.</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sutter, Eli A.</au><au>Tong, Xiao</au><au>Jungjohann, Katherine</au><au>Sutter, Peter W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation of nanoscale Au–In alloy particles as a possible route toward stable Au-based catalysts</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-06-25</date><risdate>2013</risdate><volume>110</volume><issue>26</issue><spage>10519</spage><epage>10524</epage><pages>10519-10524</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The oxidation of bimetallic alloy nanoparticles comprising a noble and a nonnoble metal is expected to cause the formation of a single-component surface oxide of the nonnoble metal, surrounding a core enriched with the noble metal. Studying the room temperature oxidation of Au–In nanoparticles, we show that this simple picture does not apply to an important class of bimetallic alloys, in which the oxidation proceeds via predominant oxygen diffusion. Instead of a crystalline In ₂O ₃ shell, such oxidation leads to an amorphous shell of mixed Au–In oxide that remains stable to high temperatures and whose surface layer is enriched with Au. The Au-rich mixed oxide is capable of adsorbing both CO and O ₂ and converting them to CO ₂, which desorbs near room temperature. The oxidation of Au–In alloys to a mixed Au–In oxide shows significant promise as a viable approach toward Au-based oxidation catalysts, which do not require any complex synthesis processes and resist deactivation up to at least 300 °C.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23754412</pmid><doi>10.1073/pnas.1305388110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-06, Vol.110 (26), p.10519-10524 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1305388110 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alloys ambient temperature Catalysis Catalysts Crystals gold Metal particles Nanoparticles Noble metals Oxidation Oxides Oxygen Physical Sciences Room temperature |
title | Oxidation of nanoscale Au–In alloy particles as a possible route toward stable Au-based catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20of%20nanoscale%20Au%E2%80%93In%20alloy%20particles%20as%20a%20possible%20route%20toward%20stable%20Au-based%20catalysts&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sutter,%20Eli%20A.&rft.date=2013-06-25&rft.volume=110&rft.issue=26&rft.spage=10519&rft.epage=10524&rft.pages=10519-10524&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1305388110&rft_dat=%3Cjstor_cross%3E42706515%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372466247&rft_id=info:pmid/23754412&rft_jstor_id=42706515&rfr_iscdi=true |