Involvement of Toso in activation of monocytes, macrophages, and granulocytes
Rapid activation of immune responses is necessary for antibacterial defense, but excessive immune activation can result in life-threatening septic shock. Understanding how these processes are balanced may provide novel therapeutic potential in treating inflammatory disease. Fc receptors are crucial...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-02, Vol.110 (7), p.2593-2598 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2598 |
---|---|
container_issue | 7 |
container_start_page | 2593 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Lang, Karl S. Lang, Philipp A. Meryk, Andreas Pandyra, Aleksandra A. Boucher, Louis-Martin Pozdeev, Vitaly I. Tusche, Michael W. Göthert, Joachim R. Haight, Julian Wakeham, Andrew You-Ten, Annick J. MclIwain, David R. Merches, Katja Khairnar, Vishal Recher, Mike Nolan, Garry P. Hitoshi, Yasumichi Funkner, Pauline Navarini, Alexander A. Verschoor, Admar Shaabani, Namir Honke, Nadine Penn, Linda Z. Ohashi, Pamela S. Häussinger, Dieter Lee, Kyeong-Hee Mak, Tak W. |
description | Rapid activation of immune responses is necessary for antibacterial defense, but excessive immune activation can result in life-threatening septic shock. Understanding how these processes are balanced may provide novel therapeutic potential in treating inflammatory disease. Fc receptors are crucial for innate immune activation. However, the role of the putative Fc receptor for IgM, known as Toso/Faim3, has to this point been unclear. In this study, we generated Toso-deficient mice and used them to uncover a critical regulatory function of Toso in innate immune activation. Development of innate immune cells was intact in the absence of Toso, but Toso-deficient neutrophils exhibited more reactive oxygen species production and reduced phagocytosis of pathogens compared with controls. Cytokine production was also decreased in Toso ⁻/⁻ mice compared with WT animals, rendering them resistant to septic shock induced by lipopolysaccharide. However, Toso ⁻/⁻ mice also displayed limited cytokine production after infection with the bacterium Listeria monocytogenes that was correlated with elevated presence of Listeria throughout the body. Accordingly, Toso ⁻/⁻ mice succumbed to infections of L. monocytogenes , whereas WT mice successfully eliminated the infection. Taken together, our data reveal Toso to be a unique regulator of innate immune responses during bacterial infection and septic shock. |
doi_str_mv | 10.1073/pnas.1222264110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1222264110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41992382</jstor_id><sourcerecordid>41992382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-d382cb9b7f5176caa7196dedb95b4e2f64b16ac7d62321c051c1ebdb52ba96b53</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAmIxIUDaT3-jC9IqOKjUhEH2rNlO842q8Re7GSl_vc4pCwFXyz7_eZpZh5CLwGfAZb0fB9MPgNSjmAA-BHaAFZQC6bwY7TBmMi6YYSdoGc57zDGijf4KTohlHIlMd2gb5fhEIeDH32YqthV1zHHqg-VcVN_MFMfw_I7xhDd3eTz-2o0LsX9rdkuDxPaaptMmIdVfo6edGbI_sX9fYpuPn-6vvhaX33_cnnx8ap2nIupbmlDnFVWdhykcMZIUKL1rVXcMk86wSwI42QrCCXgMAcH3raWE2uUsJyeog-r7362o29daT6ZQe9TP5p0p6Pp9b9K6G_1Nh405ZIpshi8uzdI8efs86THPjs_DCb4OGcNpJFN01AFBX37H7qLcwplvN-UFEpSUajzlSrbyTn57tgMYL1EpZeo9N-oSsXrhzMc-T_ZPACWyqNd8ZOacLUAr1Zgl6eYjgQDpUjZcNHfrHpnojbb1Gd984NgEBgDA8Ew_QVD1a2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1287769736</pqid></control><display><type>article</type><title>Involvement of Toso in activation of monocytes, macrophages, and granulocytes</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lang, Karl S. ; Lang, Philipp A. ; Meryk, Andreas ; Pandyra, Aleksandra A. ; Boucher, Louis-Martin ; Pozdeev, Vitaly I. ; Tusche, Michael W. ; Göthert, Joachim R. ; Haight, Julian ; Wakeham, Andrew ; You-Ten, Annick J. ; MclIwain, David R. ; Merches, Katja ; Khairnar, Vishal ; Recher, Mike ; Nolan, Garry P. ; Hitoshi, Yasumichi ; Funkner, Pauline ; Navarini, Alexander A. ; Verschoor, Admar ; Shaabani, Namir ; Honke, Nadine ; Penn, Linda Z. ; Ohashi, Pamela S. ; Häussinger, Dieter ; Lee, Kyeong-Hee ; Mak, Tak W.</creator><creatorcontrib>Lang, Karl S. ; Lang, Philipp A. ; Meryk, Andreas ; Pandyra, Aleksandra A. ; Boucher, Louis-Martin ; Pozdeev, Vitaly I. ; Tusche, Michael W. ; Göthert, Joachim R. ; Haight, Julian ; Wakeham, Andrew ; You-Ten, Annick J. ; MclIwain, David R. ; Merches, Katja ; Khairnar, Vishal ; Recher, Mike ; Nolan, Garry P. ; Hitoshi, Yasumichi ; Funkner, Pauline ; Navarini, Alexander A. ; Verschoor, Admar ; Shaabani, Namir ; Honke, Nadine ; Penn, Linda Z. ; Ohashi, Pamela S. ; Häussinger, Dieter ; Lee, Kyeong-Hee ; Mak, Tak W.</creatorcontrib><description>Rapid activation of immune responses is necessary for antibacterial defense, but excessive immune activation can result in life-threatening septic shock. Understanding how these processes are balanced may provide novel therapeutic potential in treating inflammatory disease. Fc receptors are crucial for innate immune activation. However, the role of the putative Fc receptor for IgM, known as Toso/Faim3, has to this point been unclear. In this study, we generated Toso-deficient mice and used them to uncover a critical regulatory function of Toso in innate immune activation. Development of innate immune cells was intact in the absence of Toso, but Toso-deficient neutrophils exhibited more reactive oxygen species production and reduced phagocytosis of pathogens compared with controls. Cytokine production was also decreased in Toso ⁻/⁻ mice compared with WT animals, rendering them resistant to septic shock induced by lipopolysaccharide. However, Toso ⁻/⁻ mice also displayed limited cytokine production after infection with the bacterium Listeria monocytogenes that was correlated with elevated presence of Listeria throughout the body. Accordingly, Toso ⁻/⁻ mice succumbed to infections of L. monocytogenes , whereas WT mice successfully eliminated the infection. Taken together, our data reveal Toso to be a unique regulator of innate immune responses during bacterial infection and septic shock.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1222264110</identifier><identifier>PMID: 23359703</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Analysis of Variance ; Animals ; Biological Sciences ; Blood ; Bone marrow cells ; Carrier Proteins - genetics ; Carrier Proteins - immunology ; Cells ; Crosses, Genetic ; Cytokines ; Cytokines - metabolism ; Enzyme-Linked Immunosorbent Assay ; Flow Cytometry ; Granulocytes ; Granulocytes - immunology ; Immune system ; Immunity, Innate - immunology ; Immunoblotting ; Infections ; Listeria ; Listeriosis - immunology ; Macrophage Activation - immunology ; Macrophages ; Membrane Proteins - genetics ; Membrane Proteins - immunology ; Mice ; Mice, Knockout ; Monocytes ; Monocytes - immunology ; Neutrophils ; Pathogens ; Peroxidase - metabolism ; Phagocytosis ; Phagocytosis - immunology ; Reactive Oxygen Species - metabolism ; Real-Time Polymerase Chain Reaction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-02, Vol.110 (7), p.2593-2598</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 12, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-d382cb9b7f5176caa7196dedb95b4e2f64b16ac7d62321c051c1ebdb52ba96b53</citedby><cites>FETCH-LOGICAL-c556t-d382cb9b7f5176caa7196dedb95b4e2f64b16ac7d62321c051c1ebdb52ba96b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41992382$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41992382$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23359703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lang, Karl S.</creatorcontrib><creatorcontrib>Lang, Philipp A.</creatorcontrib><creatorcontrib>Meryk, Andreas</creatorcontrib><creatorcontrib>Pandyra, Aleksandra A.</creatorcontrib><creatorcontrib>Boucher, Louis-Martin</creatorcontrib><creatorcontrib>Pozdeev, Vitaly I.</creatorcontrib><creatorcontrib>Tusche, Michael W.</creatorcontrib><creatorcontrib>Göthert, Joachim R.</creatorcontrib><creatorcontrib>Haight, Julian</creatorcontrib><creatorcontrib>Wakeham, Andrew</creatorcontrib><creatorcontrib>You-Ten, Annick J.</creatorcontrib><creatorcontrib>MclIwain, David R.</creatorcontrib><creatorcontrib>Merches, Katja</creatorcontrib><creatorcontrib>Khairnar, Vishal</creatorcontrib><creatorcontrib>Recher, Mike</creatorcontrib><creatorcontrib>Nolan, Garry P.</creatorcontrib><creatorcontrib>Hitoshi, Yasumichi</creatorcontrib><creatorcontrib>Funkner, Pauline</creatorcontrib><creatorcontrib>Navarini, Alexander A.</creatorcontrib><creatorcontrib>Verschoor, Admar</creatorcontrib><creatorcontrib>Shaabani, Namir</creatorcontrib><creatorcontrib>Honke, Nadine</creatorcontrib><creatorcontrib>Penn, Linda Z.</creatorcontrib><creatorcontrib>Ohashi, Pamela S.</creatorcontrib><creatorcontrib>Häussinger, Dieter</creatorcontrib><creatorcontrib>Lee, Kyeong-Hee</creatorcontrib><creatorcontrib>Mak, Tak W.</creatorcontrib><title>Involvement of Toso in activation of monocytes, macrophages, and granulocytes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Rapid activation of immune responses is necessary for antibacterial defense, but excessive immune activation can result in life-threatening septic shock. Understanding how these processes are balanced may provide novel therapeutic potential in treating inflammatory disease. Fc receptors are crucial for innate immune activation. However, the role of the putative Fc receptor for IgM, known as Toso/Faim3, has to this point been unclear. In this study, we generated Toso-deficient mice and used them to uncover a critical regulatory function of Toso in innate immune activation. Development of innate immune cells was intact in the absence of Toso, but Toso-deficient neutrophils exhibited more reactive oxygen species production and reduced phagocytosis of pathogens compared with controls. Cytokine production was also decreased in Toso ⁻/⁻ mice compared with WT animals, rendering them resistant to septic shock induced by lipopolysaccharide. However, Toso ⁻/⁻ mice also displayed limited cytokine production after infection with the bacterium Listeria monocytogenes that was correlated with elevated presence of Listeria throughout the body. Accordingly, Toso ⁻/⁻ mice succumbed to infections of L. monocytogenes , whereas WT mice successfully eliminated the infection. Taken together, our data reveal Toso to be a unique regulator of innate immune responses during bacterial infection and septic shock.</description><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Blood</subject><subject>Bone marrow cells</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - immunology</subject><subject>Cells</subject><subject>Crosses, Genetic</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Flow Cytometry</subject><subject>Granulocytes</subject><subject>Granulocytes - immunology</subject><subject>Immune system</subject><subject>Immunity, Innate - immunology</subject><subject>Immunoblotting</subject><subject>Infections</subject><subject>Listeria</subject><subject>Listeriosis - immunology</subject><subject>Macrophage Activation - immunology</subject><subject>Macrophages</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - immunology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Monocytes</subject><subject>Monocytes - immunology</subject><subject>Neutrophils</subject><subject>Pathogens</subject><subject>Peroxidase - metabolism</subject><subject>Phagocytosis</subject><subject>Phagocytosis - immunology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Real-Time Polymerase Chain Reaction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EokvhzAmIxIUDaT3-jC9IqOKjUhEH2rNlO842q8Re7GSl_vc4pCwFXyz7_eZpZh5CLwGfAZb0fB9MPgNSjmAA-BHaAFZQC6bwY7TBmMi6YYSdoGc57zDGijf4KTohlHIlMd2gb5fhEIeDH32YqthV1zHHqg-VcVN_MFMfw_I7xhDd3eTz-2o0LsX9rdkuDxPaaptMmIdVfo6edGbI_sX9fYpuPn-6vvhaX33_cnnx8ap2nIupbmlDnFVWdhykcMZIUKL1rVXcMk86wSwI42QrCCXgMAcH3raWE2uUsJyeog-r7362o29daT6ZQe9TP5p0p6Pp9b9K6G_1Nh405ZIpshi8uzdI8efs86THPjs_DCb4OGcNpJFN01AFBX37H7qLcwplvN-UFEpSUajzlSrbyTn57tgMYL1EpZeo9N-oSsXrhzMc-T_ZPACWyqNd8ZOacLUAr1Zgl6eYjgQDpUjZcNHfrHpnojbb1Gd984NgEBgDA8Ew_QVD1a2Q</recordid><startdate>20130212</startdate><enddate>20130212</enddate><creator>Lang, Karl S.</creator><creator>Lang, Philipp A.</creator><creator>Meryk, Andreas</creator><creator>Pandyra, Aleksandra A.</creator><creator>Boucher, Louis-Martin</creator><creator>Pozdeev, Vitaly I.</creator><creator>Tusche, Michael W.</creator><creator>Göthert, Joachim R.</creator><creator>Haight, Julian</creator><creator>Wakeham, Andrew</creator><creator>You-Ten, Annick J.</creator><creator>MclIwain, David R.</creator><creator>Merches, Katja</creator><creator>Khairnar, Vishal</creator><creator>Recher, Mike</creator><creator>Nolan, Garry P.</creator><creator>Hitoshi, Yasumichi</creator><creator>Funkner, Pauline</creator><creator>Navarini, Alexander A.</creator><creator>Verschoor, Admar</creator><creator>Shaabani, Namir</creator><creator>Honke, Nadine</creator><creator>Penn, Linda Z.</creator><creator>Ohashi, Pamela S.</creator><creator>Häussinger, Dieter</creator><creator>Lee, Kyeong-Hee</creator><creator>Mak, Tak W.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130212</creationdate><title>Involvement of Toso in activation of monocytes, macrophages, and granulocytes</title><author>Lang, Karl S. ; Lang, Philipp A. ; Meryk, Andreas ; Pandyra, Aleksandra A. ; Boucher, Louis-Martin ; Pozdeev, Vitaly I. ; Tusche, Michael W. ; Göthert, Joachim R. ; Haight, Julian ; Wakeham, Andrew ; You-Ten, Annick J. ; MclIwain, David R. ; Merches, Katja ; Khairnar, Vishal ; Recher, Mike ; Nolan, Garry P. ; Hitoshi, Yasumichi ; Funkner, Pauline ; Navarini, Alexander A. ; Verschoor, Admar ; Shaabani, Namir ; Honke, Nadine ; Penn, Linda Z. ; Ohashi, Pamela S. ; Häussinger, Dieter ; Lee, Kyeong-Hee ; Mak, Tak W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-d382cb9b7f5176caa7196dedb95b4e2f64b16ac7d62321c051c1ebdb52ba96b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Blood</topic><topic>Bone marrow cells</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - immunology</topic><topic>Cells</topic><topic>Crosses, Genetic</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Flow Cytometry</topic><topic>Granulocytes</topic><topic>Granulocytes - immunology</topic><topic>Immune system</topic><topic>Immunity, Innate - immunology</topic><topic>Immunoblotting</topic><topic>Infections</topic><topic>Listeria</topic><topic>Listeriosis - immunology</topic><topic>Macrophage Activation - immunology</topic><topic>Macrophages</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - immunology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Monocytes</topic><topic>Monocytes - immunology</topic><topic>Neutrophils</topic><topic>Pathogens</topic><topic>Peroxidase - metabolism</topic><topic>Phagocytosis</topic><topic>Phagocytosis - immunology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Real-Time Polymerase Chain Reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, Karl S.</creatorcontrib><creatorcontrib>Lang, Philipp A.</creatorcontrib><creatorcontrib>Meryk, Andreas</creatorcontrib><creatorcontrib>Pandyra, Aleksandra A.</creatorcontrib><creatorcontrib>Boucher, Louis-Martin</creatorcontrib><creatorcontrib>Pozdeev, Vitaly I.</creatorcontrib><creatorcontrib>Tusche, Michael W.</creatorcontrib><creatorcontrib>Göthert, Joachim R.</creatorcontrib><creatorcontrib>Haight, Julian</creatorcontrib><creatorcontrib>Wakeham, Andrew</creatorcontrib><creatorcontrib>You-Ten, Annick J.</creatorcontrib><creatorcontrib>MclIwain, David R.</creatorcontrib><creatorcontrib>Merches, Katja</creatorcontrib><creatorcontrib>Khairnar, Vishal</creatorcontrib><creatorcontrib>Recher, Mike</creatorcontrib><creatorcontrib>Nolan, Garry P.</creatorcontrib><creatorcontrib>Hitoshi, Yasumichi</creatorcontrib><creatorcontrib>Funkner, Pauline</creatorcontrib><creatorcontrib>Navarini, Alexander A.</creatorcontrib><creatorcontrib>Verschoor, Admar</creatorcontrib><creatorcontrib>Shaabani, Namir</creatorcontrib><creatorcontrib>Honke, Nadine</creatorcontrib><creatorcontrib>Penn, Linda Z.</creatorcontrib><creatorcontrib>Ohashi, Pamela S.</creatorcontrib><creatorcontrib>Häussinger, Dieter</creatorcontrib><creatorcontrib>Lee, Kyeong-Hee</creatorcontrib><creatorcontrib>Mak, Tak W.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lang, Karl S.</au><au>Lang, Philipp A.</au><au>Meryk, Andreas</au><au>Pandyra, Aleksandra A.</au><au>Boucher, Louis-Martin</au><au>Pozdeev, Vitaly I.</au><au>Tusche, Michael W.</au><au>Göthert, Joachim R.</au><au>Haight, Julian</au><au>Wakeham, Andrew</au><au>You-Ten, Annick J.</au><au>MclIwain, David R.</au><au>Merches, Katja</au><au>Khairnar, Vishal</au><au>Recher, Mike</au><au>Nolan, Garry P.</au><au>Hitoshi, Yasumichi</au><au>Funkner, Pauline</au><au>Navarini, Alexander A.</au><au>Verschoor, Admar</au><au>Shaabani, Namir</au><au>Honke, Nadine</au><au>Penn, Linda Z.</au><au>Ohashi, Pamela S.</au><au>Häussinger, Dieter</au><au>Lee, Kyeong-Hee</au><au>Mak, Tak W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of Toso in activation of monocytes, macrophages, and granulocytes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-02-12</date><risdate>2013</risdate><volume>110</volume><issue>7</issue><spage>2593</spage><epage>2598</epage><pages>2593-2598</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Rapid activation of immune responses is necessary for antibacterial defense, but excessive immune activation can result in life-threatening septic shock. Understanding how these processes are balanced may provide novel therapeutic potential in treating inflammatory disease. Fc receptors are crucial for innate immune activation. However, the role of the putative Fc receptor for IgM, known as Toso/Faim3, has to this point been unclear. In this study, we generated Toso-deficient mice and used them to uncover a critical regulatory function of Toso in innate immune activation. Development of innate immune cells was intact in the absence of Toso, but Toso-deficient neutrophils exhibited more reactive oxygen species production and reduced phagocytosis of pathogens compared with controls. Cytokine production was also decreased in Toso ⁻/⁻ mice compared with WT animals, rendering them resistant to septic shock induced by lipopolysaccharide. However, Toso ⁻/⁻ mice also displayed limited cytokine production after infection with the bacterium Listeria monocytogenes that was correlated with elevated presence of Listeria throughout the body. Accordingly, Toso ⁻/⁻ mice succumbed to infections of L. monocytogenes , whereas WT mice successfully eliminated the infection. Taken together, our data reveal Toso to be a unique regulator of innate immune responses during bacterial infection and septic shock.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23359703</pmid><doi>10.1073/pnas.1222264110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-02, Vol.110 (7), p.2593-2598 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1222264110 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Analysis of Variance Animals Biological Sciences Blood Bone marrow cells Carrier Proteins - genetics Carrier Proteins - immunology Cells Crosses, Genetic Cytokines Cytokines - metabolism Enzyme-Linked Immunosorbent Assay Flow Cytometry Granulocytes Granulocytes - immunology Immune system Immunity, Innate - immunology Immunoblotting Infections Listeria Listeriosis - immunology Macrophage Activation - immunology Macrophages Membrane Proteins - genetics Membrane Proteins - immunology Mice Mice, Knockout Monocytes Monocytes - immunology Neutrophils Pathogens Peroxidase - metabolism Phagocytosis Phagocytosis - immunology Reactive Oxygen Species - metabolism Real-Time Polymerase Chain Reaction |
title | Involvement of Toso in activation of monocytes, macrophages, and granulocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20Toso%20in%20activation%20of%20monocytes,%20macrophages,%20and%20granulocytes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lang,%20Karl%20S.&rft.date=2013-02-12&rft.volume=110&rft.issue=7&rft.spage=2593&rft.epage=2598&rft.pages=2593-2598&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1222264110&rft_dat=%3Cjstor_cross%3E41992382%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1287769736&rft_id=info:pmid/23359703&rft_jstor_id=41992382&rfr_iscdi=true |