Nitric Oxide Reaction with Red Blood Cells and Hemoglobin under Heterogeneous Conditions

Understanding the interaction of nitric oxide (NO) with red blood cells (RBCs) is vital to elucidating the metabolic fate of NO in the vasculature. Because hemoglobin (Hb) is the most abundant intraerythrocytic protein and reacts rapidly with NO, the interaction of NO with Hb has been studied extens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2002-05, Vol.99 (11), p.7763-7768
Hauptverfasser: Han, Tae H., Hyduke, Daniel R., Vaughn, Mark W., Fukuto, Jon M., Liao, James C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7768
container_issue 11
container_start_page 7763
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 99
creator Han, Tae H.
Hyduke, Daniel R.
Vaughn, Mark W.
Fukuto, Jon M.
Liao, James C.
description Understanding the interaction of nitric oxide (NO) with red blood cells (RBCs) is vital to elucidating the metabolic fate of NO in the vasculature. Because hemoglobin (Hb) is the most abundant intraerythrocytic protein and reacts rapidly with NO, the interaction of NO with Hb has been studied extensively. We and others have shown the NO reaction with RBCs is nearly 1,000-fold slower than the reaction with cell-free Hb. Because the reaction rate of NO with cell-free Hb and RBCs is quite different, we hypothesize that different reaction products evolve under locally high NO concentrations, which can be generated by bolus NO addition or NO inhalation. Here we use electron paramagnetic resonance to show that bolus NO addition to cell-free Hb solutions results in nitrosyl-hemoglobin [HbFe(II)NO] formation as a minor product through a MetHb-dependent pathway. Further, the RBC is shown to be more prone to form HbFe(II)NO under this heterogeneous condition compared with an equivalent free-Hb solution. In both cases, trapping MetHb with cyanide blocked the formation of HbFe(II)NO. We conclude that the formation of HbFe(II)NO is a heterogeneous phenomenon involving three successive reactions of NO with the same heme molecule. These results were supported further by mathematically modeling NO-Hb reactions and diffusion.
doi_str_mv 10.1073/pnas.122118299
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_122118299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3058899</jstor_id><sourcerecordid>3058899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-fb1160a24caec95b781e54248e299647deca7ea7f85d3fe449cb92711a62b0693</originalsourceid><addsrcrecordid>eNp9kcFvFCEYxYnR2LV69WTMxIOeZgWGGeDgwW7UmjQ2MZp4Iwx8s2UzC1tgbP3vZdx1rR48Efh-78t7PISeErwkmDevd16nJaGUEEGlvIcWBEtSd0zi-2iBMeW1YJSdoEcpbTDGshX4ITohFDe0afkCffvkcnSmurx1FqrPoE12wVc3Ll-Vm63OxhBstYJxTJX2tjqHbViPoXe-mryFWB4yxLAGD2FK1Sp46-YN6TF6MOgxwZPDeYq-vn_3ZXVeX1x--Lh6e1EbJkSuh56QDmvKjAYj254LAm1xLKDE6Ri3YDQHzQfR2mYAxqTpJeWE6I72uJPNKXqz37ub-i1YAz5HPapddFsdf6ignfp74t2VWofvilDWsLboXx70MVxPkLLaumRKXv0rkeKEl98VM_jiH3ATpuhLNkUxaUTxMrtZ7iETQ0oRhqMRgtVcmJoLU8fCiuD5Xft_8ENDd4BZ-HsspSJEcd41BXj1X0AN0zhmuM2FfLYnNymHeEQb3ApRrPwEWjyzlQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201386939</pqid></control><display><type>article</type><title>Nitric Oxide Reaction with Red Blood Cells and Hemoglobin under Heterogeneous Conditions</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Han, Tae H. ; Hyduke, Daniel R. ; Vaughn, Mark W. ; Fukuto, Jon M. ; Liao, James C.</creator><creatorcontrib>Han, Tae H. ; Hyduke, Daniel R. ; Vaughn, Mark W. ; Fukuto, Jon M. ; Liao, James C.</creatorcontrib><description>Understanding the interaction of nitric oxide (NO) with red blood cells (RBCs) is vital to elucidating the metabolic fate of NO in the vasculature. Because hemoglobin (Hb) is the most abundant intraerythrocytic protein and reacts rapidly with NO, the interaction of NO with Hb has been studied extensively. We and others have shown the NO reaction with RBCs is nearly 1,000-fold slower than the reaction with cell-free Hb. Because the reaction rate of NO with cell-free Hb and RBCs is quite different, we hypothesize that different reaction products evolve under locally high NO concentrations, which can be generated by bolus NO addition or NO inhalation. Here we use electron paramagnetic resonance to show that bolus NO addition to cell-free Hb solutions results in nitrosyl-hemoglobin [HbFe(II)NO] formation as a minor product through a MetHb-dependent pathway. Further, the RBC is shown to be more prone to form HbFe(II)NO under this heterogeneous condition compared with an equivalent free-Hb solution. In both cases, trapping MetHb with cyanide blocked the formation of HbFe(II)NO. We conclude that the formation of HbFe(II)NO is a heterogeneous phenomenon involving three successive reactions of NO with the same heme molecule. These results were supported further by mathematically modeling NO-Hb reactions and diffusion.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.122118299</identifier><identifier>PMID: 12032357</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anatomy &amp; physiology ; Animals ; Biochemistry ; Biological Sciences ; Blood ; Boluses ; Cardiovascular system ; Cattle ; Cyanides ; Diffusion coefficient ; Erythrocytes - drug effects ; Erythrocytes - physiology ; Hemoglobin ; Hemoglobins ; Hemoglobins - drug effects ; Hemoglobins - metabolism ; Luminescent Measurements ; Mathematical models ; Methemoglobin - pharmacology ; Molecules ; Nitric Oxide - pharmacology ; Nitric Oxide Donors - pharmacology ; Nitrogen ; Oxides ; Oxygen ; Simulations</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2002-05, Vol.99 (11), p.7763-7768</ispartof><rights>Copyright 1993-2002 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 28, 2002</rights><rights>Copyright © 2002, The National Academy of Sciences 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-fb1160a24caec95b781e54248e299647deca7ea7f85d3fe449cb92711a62b0693</citedby><cites>FETCH-LOGICAL-c488t-fb1160a24caec95b781e54248e299647deca7ea7f85d3fe449cb92711a62b0693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/99/11.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3058899$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3058899$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12032357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Tae H.</creatorcontrib><creatorcontrib>Hyduke, Daniel R.</creatorcontrib><creatorcontrib>Vaughn, Mark W.</creatorcontrib><creatorcontrib>Fukuto, Jon M.</creatorcontrib><creatorcontrib>Liao, James C.</creatorcontrib><title>Nitric Oxide Reaction with Red Blood Cells and Hemoglobin under Heterogeneous Conditions</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Understanding the interaction of nitric oxide (NO) with red blood cells (RBCs) is vital to elucidating the metabolic fate of NO in the vasculature. Because hemoglobin (Hb) is the most abundant intraerythrocytic protein and reacts rapidly with NO, the interaction of NO with Hb has been studied extensively. We and others have shown the NO reaction with RBCs is nearly 1,000-fold slower than the reaction with cell-free Hb. Because the reaction rate of NO with cell-free Hb and RBCs is quite different, we hypothesize that different reaction products evolve under locally high NO concentrations, which can be generated by bolus NO addition or NO inhalation. Here we use electron paramagnetic resonance to show that bolus NO addition to cell-free Hb solutions results in nitrosyl-hemoglobin [HbFe(II)NO] formation as a minor product through a MetHb-dependent pathway. Further, the RBC is shown to be more prone to form HbFe(II)NO under this heterogeneous condition compared with an equivalent free-Hb solution. In both cases, trapping MetHb with cyanide blocked the formation of HbFe(II)NO. We conclude that the formation of HbFe(II)NO is a heterogeneous phenomenon involving three successive reactions of NO with the same heme molecule. These results were supported further by mathematically modeling NO-Hb reactions and diffusion.</description><subject>Anatomy &amp; physiology</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Blood</subject><subject>Boluses</subject><subject>Cardiovascular system</subject><subject>Cattle</subject><subject>Cyanides</subject><subject>Diffusion coefficient</subject><subject>Erythrocytes - drug effects</subject><subject>Erythrocytes - physiology</subject><subject>Hemoglobin</subject><subject>Hemoglobins</subject><subject>Hemoglobins - drug effects</subject><subject>Hemoglobins - metabolism</subject><subject>Luminescent Measurements</subject><subject>Mathematical models</subject><subject>Methemoglobin - pharmacology</subject><subject>Molecules</subject><subject>Nitric Oxide - pharmacology</subject><subject>Nitric Oxide Donors - pharmacology</subject><subject>Nitrogen</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>Simulations</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFvFCEYxYnR2LV69WTMxIOeZgWGGeDgwW7UmjQ2MZp4Iwx8s2UzC1tgbP3vZdx1rR48Efh-78t7PISeErwkmDevd16nJaGUEEGlvIcWBEtSd0zi-2iBMeW1YJSdoEcpbTDGshX4ITohFDe0afkCffvkcnSmurx1FqrPoE12wVc3Ll-Vm63OxhBstYJxTJX2tjqHbViPoXe-mryFWB4yxLAGD2FK1Sp46-YN6TF6MOgxwZPDeYq-vn_3ZXVeX1x--Lh6e1EbJkSuh56QDmvKjAYj254LAm1xLKDE6Ri3YDQHzQfR2mYAxqTpJeWE6I72uJPNKXqz37ub-i1YAz5HPapddFsdf6ignfp74t2VWofvilDWsLboXx70MVxPkLLaumRKXv0rkeKEl98VM_jiH3ATpuhLNkUxaUTxMrtZ7iETQ0oRhqMRgtVcmJoLU8fCiuD5Xft_8ENDd4BZ-HsspSJEcd41BXj1X0AN0zhmuM2FfLYnNymHeEQb3ApRrPwEWjyzlQ</recordid><startdate>20020528</startdate><enddate>20020528</enddate><creator>Han, Tae H.</creator><creator>Hyduke, Daniel R.</creator><creator>Vaughn, Mark W.</creator><creator>Fukuto, Jon M.</creator><creator>Liao, James C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020528</creationdate><title>Nitric Oxide Reaction with Red Blood Cells and Hemoglobin under Heterogeneous Conditions</title><author>Han, Tae H. ; Hyduke, Daniel R. ; Vaughn, Mark W. ; Fukuto, Jon M. ; Liao, James C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-fb1160a24caec95b781e54248e299647deca7ea7f85d3fe449cb92711a62b0693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Anatomy &amp; physiology</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Blood</topic><topic>Boluses</topic><topic>Cardiovascular system</topic><topic>Cattle</topic><topic>Cyanides</topic><topic>Diffusion coefficient</topic><topic>Erythrocytes - drug effects</topic><topic>Erythrocytes - physiology</topic><topic>Hemoglobin</topic><topic>Hemoglobins</topic><topic>Hemoglobins - drug effects</topic><topic>Hemoglobins - metabolism</topic><topic>Luminescent Measurements</topic><topic>Mathematical models</topic><topic>Methemoglobin - pharmacology</topic><topic>Molecules</topic><topic>Nitric Oxide - pharmacology</topic><topic>Nitric Oxide Donors - pharmacology</topic><topic>Nitrogen</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>Simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Tae H.</creatorcontrib><creatorcontrib>Hyduke, Daniel R.</creatorcontrib><creatorcontrib>Vaughn, Mark W.</creatorcontrib><creatorcontrib>Fukuto, Jon M.</creatorcontrib><creatorcontrib>Liao, James C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Tae H.</au><au>Hyduke, Daniel R.</au><au>Vaughn, Mark W.</au><au>Fukuto, Jon M.</au><au>Liao, James C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric Oxide Reaction with Red Blood Cells and Hemoglobin under Heterogeneous Conditions</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2002-05-28</date><risdate>2002</risdate><volume>99</volume><issue>11</issue><spage>7763</spage><epage>7768</epage><pages>7763-7768</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Understanding the interaction of nitric oxide (NO) with red blood cells (RBCs) is vital to elucidating the metabolic fate of NO in the vasculature. Because hemoglobin (Hb) is the most abundant intraerythrocytic protein and reacts rapidly with NO, the interaction of NO with Hb has been studied extensively. We and others have shown the NO reaction with RBCs is nearly 1,000-fold slower than the reaction with cell-free Hb. Because the reaction rate of NO with cell-free Hb and RBCs is quite different, we hypothesize that different reaction products evolve under locally high NO concentrations, which can be generated by bolus NO addition or NO inhalation. Here we use electron paramagnetic resonance to show that bolus NO addition to cell-free Hb solutions results in nitrosyl-hemoglobin [HbFe(II)NO] formation as a minor product through a MetHb-dependent pathway. Further, the RBC is shown to be more prone to form HbFe(II)NO under this heterogeneous condition compared with an equivalent free-Hb solution. In both cases, trapping MetHb with cyanide blocked the formation of HbFe(II)NO. We conclude that the formation of HbFe(II)NO is a heterogeneous phenomenon involving three successive reactions of NO with the same heme molecule. These results were supported further by mathematically modeling NO-Hb reactions and diffusion.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12032357</pmid><doi>10.1073/pnas.122118299</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2002-05, Vol.99 (11), p.7763-7768
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_122118299
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Anatomy & physiology
Animals
Biochemistry
Biological Sciences
Blood
Boluses
Cardiovascular system
Cattle
Cyanides
Diffusion coefficient
Erythrocytes - drug effects
Erythrocytes - physiology
Hemoglobin
Hemoglobins
Hemoglobins - drug effects
Hemoglobins - metabolism
Luminescent Measurements
Mathematical models
Methemoglobin - pharmacology
Molecules
Nitric Oxide - pharmacology
Nitric Oxide Donors - pharmacology
Nitrogen
Oxides
Oxygen
Simulations
title Nitric Oxide Reaction with Red Blood Cells and Hemoglobin under Heterogeneous Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20Oxide%20Reaction%20with%20Red%20Blood%20Cells%20and%20Hemoglobin%20under%20Heterogeneous%20Conditions&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Han,%20Tae%20H.&rft.date=2002-05-28&rft.volume=99&rft.issue=11&rft.spage=7763&rft.epage=7768&rft.pages=7763-7768&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.122118299&rft_dat=%3Cjstor_cross%3E3058899%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201386939&rft_id=info:pmid/12032357&rft_jstor_id=3058899&rfr_iscdi=true