Nitric Oxide Reaction with Red Blood Cells and Hemoglobin under Heterogeneous Conditions
Understanding the interaction of nitric oxide (NO) with red blood cells (RBCs) is vital to elucidating the metabolic fate of NO in the vasculature. Because hemoglobin (Hb) is the most abundant intraerythrocytic protein and reacts rapidly with NO, the interaction of NO with Hb has been studied extens...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2002-05, Vol.99 (11), p.7763-7768 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7768 |
---|---|
container_issue | 11 |
container_start_page | 7763 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 99 |
creator | Han, Tae H. Hyduke, Daniel R. Vaughn, Mark W. Fukuto, Jon M. Liao, James C. |
description | Understanding the interaction of nitric oxide (NO) with red blood cells (RBCs) is vital to elucidating the metabolic fate of NO in the vasculature. Because hemoglobin (Hb) is the most abundant intraerythrocytic protein and reacts rapidly with NO, the interaction of NO with Hb has been studied extensively. We and others have shown the NO reaction with RBCs is nearly 1,000-fold slower than the reaction with cell-free Hb. Because the reaction rate of NO with cell-free Hb and RBCs is quite different, we hypothesize that different reaction products evolve under locally high NO concentrations, which can be generated by bolus NO addition or NO inhalation. Here we use electron paramagnetic resonance to show that bolus NO addition to cell-free Hb solutions results in nitrosyl-hemoglobin [HbFe(II)NO] formation as a minor product through a MetHb-dependent pathway. Further, the RBC is shown to be more prone to form HbFe(II)NO under this heterogeneous condition compared with an equivalent free-Hb solution. In both cases, trapping MetHb with cyanide blocked the formation of HbFe(II)NO. We conclude that the formation of HbFe(II)NO is a heterogeneous phenomenon involving three successive reactions of NO with the same heme molecule. These results were supported further by mathematically modeling NO-Hb reactions and diffusion. |
doi_str_mv | 10.1073/pnas.122118299 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_122118299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3058899</jstor_id><sourcerecordid>3058899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-fb1160a24caec95b781e54248e299647deca7ea7f85d3fe449cb92711a62b0693</originalsourceid><addsrcrecordid>eNp9kcFvFCEYxYnR2LV69WTMxIOeZgWGGeDgwW7UmjQ2MZp4Iwx8s2UzC1tgbP3vZdx1rR48Efh-78t7PISeErwkmDevd16nJaGUEEGlvIcWBEtSd0zi-2iBMeW1YJSdoEcpbTDGshX4ITohFDe0afkCffvkcnSmurx1FqrPoE12wVc3Ll-Vm63OxhBstYJxTJX2tjqHbViPoXe-mryFWB4yxLAGD2FK1Sp46-YN6TF6MOgxwZPDeYq-vn_3ZXVeX1x--Lh6e1EbJkSuh56QDmvKjAYj254LAm1xLKDE6Ri3YDQHzQfR2mYAxqTpJeWE6I72uJPNKXqz37ub-i1YAz5HPapddFsdf6ignfp74t2VWofvilDWsLboXx70MVxPkLLaumRKXv0rkeKEl98VM_jiH3ATpuhLNkUxaUTxMrtZ7iETQ0oRhqMRgtVcmJoLU8fCiuD5Xft_8ENDd4BZ-HsspSJEcd41BXj1X0AN0zhmuM2FfLYnNymHeEQb3ApRrPwEWjyzlQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201386939</pqid></control><display><type>article</type><title>Nitric Oxide Reaction with Red Blood Cells and Hemoglobin under Heterogeneous Conditions</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Han, Tae H. ; Hyduke, Daniel R. ; Vaughn, Mark W. ; Fukuto, Jon M. ; Liao, James C.</creator><creatorcontrib>Han, Tae H. ; Hyduke, Daniel R. ; Vaughn, Mark W. ; Fukuto, Jon M. ; Liao, James C.</creatorcontrib><description>Understanding the interaction of nitric oxide (NO) with red blood cells (RBCs) is vital to elucidating the metabolic fate of NO in the vasculature. Because hemoglobin (Hb) is the most abundant intraerythrocytic protein and reacts rapidly with NO, the interaction of NO with Hb has been studied extensively. We and others have shown the NO reaction with RBCs is nearly 1,000-fold slower than the reaction with cell-free Hb. Because the reaction rate of NO with cell-free Hb and RBCs is quite different, we hypothesize that different reaction products evolve under locally high NO concentrations, which can be generated by bolus NO addition or NO inhalation. Here we use electron paramagnetic resonance to show that bolus NO addition to cell-free Hb solutions results in nitrosyl-hemoglobin [HbFe(II)NO] formation as a minor product through a MetHb-dependent pathway. Further, the RBC is shown to be more prone to form HbFe(II)NO under this heterogeneous condition compared with an equivalent free-Hb solution. In both cases, trapping MetHb with cyanide blocked the formation of HbFe(II)NO. We conclude that the formation of HbFe(II)NO is a heterogeneous phenomenon involving three successive reactions of NO with the same heme molecule. These results were supported further by mathematically modeling NO-Hb reactions and diffusion.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.122118299</identifier><identifier>PMID: 12032357</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anatomy & physiology ; Animals ; Biochemistry ; Biological Sciences ; Blood ; Boluses ; Cardiovascular system ; Cattle ; Cyanides ; Diffusion coefficient ; Erythrocytes - drug effects ; Erythrocytes - physiology ; Hemoglobin ; Hemoglobins ; Hemoglobins - drug effects ; Hemoglobins - metabolism ; Luminescent Measurements ; Mathematical models ; Methemoglobin - pharmacology ; Molecules ; Nitric Oxide - pharmacology ; Nitric Oxide Donors - pharmacology ; Nitrogen ; Oxides ; Oxygen ; Simulations</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2002-05, Vol.99 (11), p.7763-7768</ispartof><rights>Copyright 1993-2002 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 28, 2002</rights><rights>Copyright © 2002, The National Academy of Sciences 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-fb1160a24caec95b781e54248e299647deca7ea7f85d3fe449cb92711a62b0693</citedby><cites>FETCH-LOGICAL-c488t-fb1160a24caec95b781e54248e299647deca7ea7f85d3fe449cb92711a62b0693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/99/11.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3058899$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3058899$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12032357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Tae H.</creatorcontrib><creatorcontrib>Hyduke, Daniel R.</creatorcontrib><creatorcontrib>Vaughn, Mark W.</creatorcontrib><creatorcontrib>Fukuto, Jon M.</creatorcontrib><creatorcontrib>Liao, James C.</creatorcontrib><title>Nitric Oxide Reaction with Red Blood Cells and Hemoglobin under Heterogeneous Conditions</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Understanding the interaction of nitric oxide (NO) with red blood cells (RBCs) is vital to elucidating the metabolic fate of NO in the vasculature. Because hemoglobin (Hb) is the most abundant intraerythrocytic protein and reacts rapidly with NO, the interaction of NO with Hb has been studied extensively. We and others have shown the NO reaction with RBCs is nearly 1,000-fold slower than the reaction with cell-free Hb. Because the reaction rate of NO with cell-free Hb and RBCs is quite different, we hypothesize that different reaction products evolve under locally high NO concentrations, which can be generated by bolus NO addition or NO inhalation. Here we use electron paramagnetic resonance to show that bolus NO addition to cell-free Hb solutions results in nitrosyl-hemoglobin [HbFe(II)NO] formation as a minor product through a MetHb-dependent pathway. Further, the RBC is shown to be more prone to form HbFe(II)NO under this heterogeneous condition compared with an equivalent free-Hb solution. In both cases, trapping MetHb with cyanide blocked the formation of HbFe(II)NO. We conclude that the formation of HbFe(II)NO is a heterogeneous phenomenon involving three successive reactions of NO with the same heme molecule. These results were supported further by mathematically modeling NO-Hb reactions and diffusion.</description><subject>Anatomy & physiology</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Blood</subject><subject>Boluses</subject><subject>Cardiovascular system</subject><subject>Cattle</subject><subject>Cyanides</subject><subject>Diffusion coefficient</subject><subject>Erythrocytes - drug effects</subject><subject>Erythrocytes - physiology</subject><subject>Hemoglobin</subject><subject>Hemoglobins</subject><subject>Hemoglobins - drug effects</subject><subject>Hemoglobins - metabolism</subject><subject>Luminescent Measurements</subject><subject>Mathematical models</subject><subject>Methemoglobin - pharmacology</subject><subject>Molecules</subject><subject>Nitric Oxide - pharmacology</subject><subject>Nitric Oxide Donors - pharmacology</subject><subject>Nitrogen</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>Simulations</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFvFCEYxYnR2LV69WTMxIOeZgWGGeDgwW7UmjQ2MZp4Iwx8s2UzC1tgbP3vZdx1rR48Efh-78t7PISeErwkmDevd16nJaGUEEGlvIcWBEtSd0zi-2iBMeW1YJSdoEcpbTDGshX4ITohFDe0afkCffvkcnSmurx1FqrPoE12wVc3Ll-Vm63OxhBstYJxTJX2tjqHbViPoXe-mryFWB4yxLAGD2FK1Sp46-YN6TF6MOgxwZPDeYq-vn_3ZXVeX1x--Lh6e1EbJkSuh56QDmvKjAYj254LAm1xLKDE6Ri3YDQHzQfR2mYAxqTpJeWE6I72uJPNKXqz37ub-i1YAz5HPapddFsdf6ignfp74t2VWofvilDWsLboXx70MVxPkLLaumRKXv0rkeKEl98VM_jiH3ATpuhLNkUxaUTxMrtZ7iETQ0oRhqMRgtVcmJoLU8fCiuD5Xft_8ENDd4BZ-HsspSJEcd41BXj1X0AN0zhmuM2FfLYnNymHeEQb3ApRrPwEWjyzlQ</recordid><startdate>20020528</startdate><enddate>20020528</enddate><creator>Han, Tae H.</creator><creator>Hyduke, Daniel R.</creator><creator>Vaughn, Mark W.</creator><creator>Fukuto, Jon M.</creator><creator>Liao, James C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020528</creationdate><title>Nitric Oxide Reaction with Red Blood Cells and Hemoglobin under Heterogeneous Conditions</title><author>Han, Tae H. ; Hyduke, Daniel R. ; Vaughn, Mark W. ; Fukuto, Jon M. ; Liao, James C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-fb1160a24caec95b781e54248e299647deca7ea7f85d3fe449cb92711a62b0693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Anatomy & physiology</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Blood</topic><topic>Boluses</topic><topic>Cardiovascular system</topic><topic>Cattle</topic><topic>Cyanides</topic><topic>Diffusion coefficient</topic><topic>Erythrocytes - drug effects</topic><topic>Erythrocytes - physiology</topic><topic>Hemoglobin</topic><topic>Hemoglobins</topic><topic>Hemoglobins - drug effects</topic><topic>Hemoglobins - metabolism</topic><topic>Luminescent Measurements</topic><topic>Mathematical models</topic><topic>Methemoglobin - pharmacology</topic><topic>Molecules</topic><topic>Nitric Oxide - pharmacology</topic><topic>Nitric Oxide Donors - pharmacology</topic><topic>Nitrogen</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>Simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Tae H.</creatorcontrib><creatorcontrib>Hyduke, Daniel R.</creatorcontrib><creatorcontrib>Vaughn, Mark W.</creatorcontrib><creatorcontrib>Fukuto, Jon M.</creatorcontrib><creatorcontrib>Liao, James C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Tae H.</au><au>Hyduke, Daniel R.</au><au>Vaughn, Mark W.</au><au>Fukuto, Jon M.</au><au>Liao, James C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric Oxide Reaction with Red Blood Cells and Hemoglobin under Heterogeneous Conditions</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2002-05-28</date><risdate>2002</risdate><volume>99</volume><issue>11</issue><spage>7763</spage><epage>7768</epage><pages>7763-7768</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Understanding the interaction of nitric oxide (NO) with red blood cells (RBCs) is vital to elucidating the metabolic fate of NO in the vasculature. Because hemoglobin (Hb) is the most abundant intraerythrocytic protein and reacts rapidly with NO, the interaction of NO with Hb has been studied extensively. We and others have shown the NO reaction with RBCs is nearly 1,000-fold slower than the reaction with cell-free Hb. Because the reaction rate of NO with cell-free Hb and RBCs is quite different, we hypothesize that different reaction products evolve under locally high NO concentrations, which can be generated by bolus NO addition or NO inhalation. Here we use electron paramagnetic resonance to show that bolus NO addition to cell-free Hb solutions results in nitrosyl-hemoglobin [HbFe(II)NO] formation as a minor product through a MetHb-dependent pathway. Further, the RBC is shown to be more prone to form HbFe(II)NO under this heterogeneous condition compared with an equivalent free-Hb solution. In both cases, trapping MetHb with cyanide blocked the formation of HbFe(II)NO. We conclude that the formation of HbFe(II)NO is a heterogeneous phenomenon involving three successive reactions of NO with the same heme molecule. These results were supported further by mathematically modeling NO-Hb reactions and diffusion.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12032357</pmid><doi>10.1073/pnas.122118299</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2002-05, Vol.99 (11), p.7763-7768 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_122118299 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Anatomy & physiology Animals Biochemistry Biological Sciences Blood Boluses Cardiovascular system Cattle Cyanides Diffusion coefficient Erythrocytes - drug effects Erythrocytes - physiology Hemoglobin Hemoglobins Hemoglobins - drug effects Hemoglobins - metabolism Luminescent Measurements Mathematical models Methemoglobin - pharmacology Molecules Nitric Oxide - pharmacology Nitric Oxide Donors - pharmacology Nitrogen Oxides Oxygen Simulations |
title | Nitric Oxide Reaction with Red Blood Cells and Hemoglobin under Heterogeneous Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20Oxide%20Reaction%20with%20Red%20Blood%20Cells%20and%20Hemoglobin%20under%20Heterogeneous%20Conditions&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Han,%20Tae%20H.&rft.date=2002-05-28&rft.volume=99&rft.issue=11&rft.spage=7763&rft.epage=7768&rft.pages=7763-7768&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.122118299&rft_dat=%3Cjstor_cross%3E3058899%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201386939&rft_id=info:pmid/12032357&rft_jstor_id=3058899&rfr_iscdi=true |