Structural ensemble and microscopic elasticity of freely diffusing DNA by direct measurement of fluctuations

Precisely measuring the ensemble of conformers that a macromolecule populates in solution is highly challenging. Thus, it has been difficult to confirm or falsify the predictions of nanometer-scale dynamical modeling. Here, we apply an X-ray interferometry technique to probe the solution structure a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-04, Vol.110 (16), p.E1444-E1451
Hauptverfasser: Shi, Xuesong, Herschlag, Daniel, Harbury, Pehr A B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E1451
container_issue 16
container_start_page E1444
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Shi, Xuesong
Herschlag, Daniel
Harbury, Pehr A B
description Precisely measuring the ensemble of conformers that a macromolecule populates in solution is highly challenging. Thus, it has been difficult to confirm or falsify the predictions of nanometer-scale dynamical modeling. Here, we apply an X-ray interferometry technique to probe the solution structure and fluctuations of B-form DNA on a length scale comparable to a protein-binding site. We determine an extensive set of intrahelix distance distributions between pairs of probes placed at distinct points on the surface of the DNA duplex. The distributions of measured distances reveal the nature and extent of the thermally driven mechanical deformations of the helix. We describe these deformations in terms of elastic constants, as is common for DNA and other polymers. The average solution structure and microscopic elasticity measured by X-ray interferometry are in striking agreement with values derived from DNA–protein crystal structures and measured by force spectroscopy, with one exception. The observed microscopic torsional rigidity of DNA is much lower than is measured by single-molecule twisting experiments, suggesting that torsional rigidity increases when DNA is stretched. Looking forward, molecular-level interferometry can provide a general tool for characterizing solution-phase structural ensembles.
doi_str_mv 10.1073/pnas.1218830110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1218830110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1328544429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-db6f6f3f653b08b791be311b0238380b0af234efd64dbbc6f7bb1de04aa7cd773</originalsourceid><addsrcrecordid>eNpdkc1vFCEYh4nR2LV69qYkXrxs-_IxwFxMmtqqSaOH2jMBBlaamWGFmSb738u42_XjRALP--T98UPoNYEzApKdb0dTzgglSjEgBJ6gFYGWrAVv4SlaAVC5VpzyE_SilHsAaBsFz9EJZY0UkjYr1N9OeXbTnE2P_Vj8YHuPzdjhIbqcikvb6LDvTZmii9MOp4BD9r7f4S6GMJc4bvDHrxfYLhfZuwkP3pQ5-8GP02-6X_RmimksL9GzYPriXx3OU3R3ffX98vP65tunL5cXN2vXMDGtOyuCCCyIhllQVrbEekaIBcoUU2DBBMq4D53gnbVOBGkt6TxwY6TrpGSn6MPeu53t4DtXV6n59DbHweSdTibqf1_G-ENv0oNmghEhoQreHwQ5_Zx9mfQQi_N9b0af5qIJo6rhnNO2ou_-Q-_TnMcab6FaohrWqkqd76nlU0v24bgMAb00qZcm9Z8m68SbvzMc-cfqKoAPwDJ51C0-oa9I3a4ib_dIMEmbTY5F391SIAKAMCE5Y78AZTewoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1329185398</pqid></control><display><type>article</type><title>Structural ensemble and microscopic elasticity of freely diffusing DNA by direct measurement of fluctuations</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Shi, Xuesong ; Herschlag, Daniel ; Harbury, Pehr A B</creator><creatorcontrib>Shi, Xuesong ; Herschlag, Daniel ; Harbury, Pehr A B</creatorcontrib><description>Precisely measuring the ensemble of conformers that a macromolecule populates in solution is highly challenging. Thus, it has been difficult to confirm or falsify the predictions of nanometer-scale dynamical modeling. Here, we apply an X-ray interferometry technique to probe the solution structure and fluctuations of B-form DNA on a length scale comparable to a protein-binding site. We determine an extensive set of intrahelix distance distributions between pairs of probes placed at distinct points on the surface of the DNA duplex. The distributions of measured distances reveal the nature and extent of the thermally driven mechanical deformations of the helix. We describe these deformations in terms of elastic constants, as is common for DNA and other polymers. The average solution structure and microscopic elasticity measured by X-ray interferometry are in striking agreement with values derived from DNA–protein crystal structures and measured by force spectroscopy, with one exception. The observed microscopic torsional rigidity of DNA is much lower than is measured by single-molecule twisting experiments, suggesting that torsional rigidity increases when DNA is stretched. Looking forward, molecular-level interferometry can provide a general tool for characterizing solution-phase structural ensembles.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1218830110</identifier><identifier>PMID: 23576725</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Binding sites ; Biological Sciences ; Crystal structure ; Deoxyribonucleic acid ; Diffusion ; DNA ; DNA - chemistry ; DNA - metabolism ; DNA-Binding Proteins - metabolism ; Interferometry ; Models, Molecular ; Nucleic Acid Conformation ; PNAS Plus ; Polymers ; Proteins ; X-rays</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (16), p.E1444-E1451</ispartof><rights>Copyright National Academy of Sciences Apr 16, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-db6f6f3f653b08b791be311b0238380b0af234efd64dbbc6f7bb1de04aa7cd773</citedby><cites>FETCH-LOGICAL-c536t-db6f6f3f653b08b791be311b0238380b0af234efd64dbbc6f7bb1de04aa7cd773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/16.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631670/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631670/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23576725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Xuesong</creatorcontrib><creatorcontrib>Herschlag, Daniel</creatorcontrib><creatorcontrib>Harbury, Pehr A B</creatorcontrib><title>Structural ensemble and microscopic elasticity of freely diffusing DNA by direct measurement of fluctuations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Precisely measuring the ensemble of conformers that a macromolecule populates in solution is highly challenging. Thus, it has been difficult to confirm or falsify the predictions of nanometer-scale dynamical modeling. Here, we apply an X-ray interferometry technique to probe the solution structure and fluctuations of B-form DNA on a length scale comparable to a protein-binding site. We determine an extensive set of intrahelix distance distributions between pairs of probes placed at distinct points on the surface of the DNA duplex. The distributions of measured distances reveal the nature and extent of the thermally driven mechanical deformations of the helix. We describe these deformations in terms of elastic constants, as is common for DNA and other polymers. The average solution structure and microscopic elasticity measured by X-ray interferometry are in striking agreement with values derived from DNA–protein crystal structures and measured by force spectroscopy, with one exception. The observed microscopic torsional rigidity of DNA is much lower than is measured by single-molecule twisting experiments, suggesting that torsional rigidity increases when DNA is stretched. Looking forward, molecular-level interferometry can provide a general tool for characterizing solution-phase structural ensembles.</description><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Crystal structure</subject><subject>Deoxyribonucleic acid</subject><subject>Diffusion</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Interferometry</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Conformation</subject><subject>PNAS Plus</subject><subject>Polymers</subject><subject>Proteins</subject><subject>X-rays</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vFCEYh4nR2LV69qYkXrxs-_IxwFxMmtqqSaOH2jMBBlaamWGFmSb738u42_XjRALP--T98UPoNYEzApKdb0dTzgglSjEgBJ6gFYGWrAVv4SlaAVC5VpzyE_SilHsAaBsFz9EJZY0UkjYr1N9OeXbTnE2P_Vj8YHuPzdjhIbqcikvb6LDvTZmii9MOp4BD9r7f4S6GMJc4bvDHrxfYLhfZuwkP3pQ5-8GP02-6X_RmimksL9GzYPriXx3OU3R3ffX98vP65tunL5cXN2vXMDGtOyuCCCyIhllQVrbEekaIBcoUU2DBBMq4D53gnbVOBGkt6TxwY6TrpGSn6MPeu53t4DtXV6n59DbHweSdTibqf1_G-ENv0oNmghEhoQreHwQ5_Zx9mfQQi_N9b0af5qIJo6rhnNO2ou_-Q-_TnMcab6FaohrWqkqd76nlU0v24bgMAb00qZcm9Z8m68SbvzMc-cfqKoAPwDJ51C0-oa9I3a4ib_dIMEmbTY5F391SIAKAMCE5Y78AZTewoQ</recordid><startdate>20130416</startdate><enddate>20130416</enddate><creator>Shi, Xuesong</creator><creator>Herschlag, Daniel</creator><creator>Harbury, Pehr A B</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130416</creationdate><title>Structural ensemble and microscopic elasticity of freely diffusing DNA by direct measurement of fluctuations</title><author>Shi, Xuesong ; Herschlag, Daniel ; Harbury, Pehr A B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-db6f6f3f653b08b791be311b0238380b0af234efd64dbbc6f7bb1de04aa7cd773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Crystal structure</topic><topic>Deoxyribonucleic acid</topic><topic>Diffusion</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Interferometry</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Conformation</topic><topic>PNAS Plus</topic><topic>Polymers</topic><topic>Proteins</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Xuesong</creatorcontrib><creatorcontrib>Herschlag, Daniel</creatorcontrib><creatorcontrib>Harbury, Pehr A B</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Xuesong</au><au>Herschlag, Daniel</au><au>Harbury, Pehr A B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural ensemble and microscopic elasticity of freely diffusing DNA by direct measurement of fluctuations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-04-16</date><risdate>2013</risdate><volume>110</volume><issue>16</issue><spage>E1444</spage><epage>E1451</epage><pages>E1444-E1451</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Precisely measuring the ensemble of conformers that a macromolecule populates in solution is highly challenging. Thus, it has been difficult to confirm or falsify the predictions of nanometer-scale dynamical modeling. Here, we apply an X-ray interferometry technique to probe the solution structure and fluctuations of B-form DNA on a length scale comparable to a protein-binding site. We determine an extensive set of intrahelix distance distributions between pairs of probes placed at distinct points on the surface of the DNA duplex. The distributions of measured distances reveal the nature and extent of the thermally driven mechanical deformations of the helix. We describe these deformations in terms of elastic constants, as is common for DNA and other polymers. The average solution structure and microscopic elasticity measured by X-ray interferometry are in striking agreement with values derived from DNA–protein crystal structures and measured by force spectroscopy, with one exception. The observed microscopic torsional rigidity of DNA is much lower than is measured by single-molecule twisting experiments, suggesting that torsional rigidity increases when DNA is stretched. Looking forward, molecular-level interferometry can provide a general tool for characterizing solution-phase structural ensembles.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23576725</pmid><doi>10.1073/pnas.1218830110</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (16), p.E1444-E1451
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1218830110
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Binding sites
Biological Sciences
Crystal structure
Deoxyribonucleic acid
Diffusion
DNA
DNA - chemistry
DNA - metabolism
DNA-Binding Proteins - metabolism
Interferometry
Models, Molecular
Nucleic Acid Conformation
PNAS Plus
Polymers
Proteins
X-rays
title Structural ensemble and microscopic elasticity of freely diffusing DNA by direct measurement of fluctuations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20ensemble%20and%20microscopic%20elasticity%20of%20freely%20diffusing%20DNA%20by%20direct%20measurement%20of%20fluctuations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Shi,%20Xuesong&rft.date=2013-04-16&rft.volume=110&rft.issue=16&rft.spage=E1444&rft.epage=E1451&rft.pages=E1444-E1451&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1218830110&rft_dat=%3Cproquest_cross%3E1328544429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1329185398&rft_id=info:pmid/23576725&rfr_iscdi=true