Structural ensemble and microscopic elasticity of freely diffusing DNA by direct measurement of fluctuations
Precisely measuring the ensemble of conformers that a macromolecule populates in solution is highly challenging. Thus, it has been difficult to confirm or falsify the predictions of nanometer-scale dynamical modeling. Here, we apply an X-ray interferometry technique to probe the solution structure a...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-04, Vol.110 (16), p.E1444-E1451 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E1451 |
---|---|
container_issue | 16 |
container_start_page | E1444 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Shi, Xuesong Herschlag, Daniel Harbury, Pehr A B |
description | Precisely measuring the ensemble of conformers that a macromolecule populates in solution is highly challenging. Thus, it has been difficult to confirm or falsify the predictions of nanometer-scale dynamical modeling. Here, we apply an X-ray interferometry technique to probe the solution structure and fluctuations of B-form DNA on a length scale comparable to a protein-binding site. We determine an extensive set of intrahelix distance distributions between pairs of probes placed at distinct points on the surface of the DNA duplex. The distributions of measured distances reveal the nature and extent of the thermally driven mechanical deformations of the helix. We describe these deformations in terms of elastic constants, as is common for DNA and other polymers. The average solution structure and microscopic elasticity measured by X-ray interferometry are in striking agreement with values derived from DNA–protein crystal structures and measured by force spectroscopy, with one exception. The observed microscopic torsional rigidity of DNA is much lower than is measured by single-molecule twisting experiments, suggesting that torsional rigidity increases when DNA is stretched. Looking forward, molecular-level interferometry can provide a general tool for characterizing solution-phase structural ensembles. |
doi_str_mv | 10.1073/pnas.1218830110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1218830110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1328544429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-db6f6f3f653b08b791be311b0238380b0af234efd64dbbc6f7bb1de04aa7cd773</originalsourceid><addsrcrecordid>eNpdkc1vFCEYh4nR2LV69qYkXrxs-_IxwFxMmtqqSaOH2jMBBlaamWGFmSb738u42_XjRALP--T98UPoNYEzApKdb0dTzgglSjEgBJ6gFYGWrAVv4SlaAVC5VpzyE_SilHsAaBsFz9EJZY0UkjYr1N9OeXbTnE2P_Vj8YHuPzdjhIbqcikvb6LDvTZmii9MOp4BD9r7f4S6GMJc4bvDHrxfYLhfZuwkP3pQ5-8GP02-6X_RmimksL9GzYPriXx3OU3R3ffX98vP65tunL5cXN2vXMDGtOyuCCCyIhllQVrbEekaIBcoUU2DBBMq4D53gnbVOBGkt6TxwY6TrpGSn6MPeu53t4DtXV6n59DbHweSdTibqf1_G-ENv0oNmghEhoQreHwQ5_Zx9mfQQi_N9b0af5qIJo6rhnNO2ou_-Q-_TnMcab6FaohrWqkqd76nlU0v24bgMAb00qZcm9Z8m68SbvzMc-cfqKoAPwDJ51C0-oa9I3a4ib_dIMEmbTY5F391SIAKAMCE5Y78AZTewoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1329185398</pqid></control><display><type>article</type><title>Structural ensemble and microscopic elasticity of freely diffusing DNA by direct measurement of fluctuations</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Shi, Xuesong ; Herschlag, Daniel ; Harbury, Pehr A B</creator><creatorcontrib>Shi, Xuesong ; Herschlag, Daniel ; Harbury, Pehr A B</creatorcontrib><description>Precisely measuring the ensemble of conformers that a macromolecule populates in solution is highly challenging. Thus, it has been difficult to confirm or falsify the predictions of nanometer-scale dynamical modeling. Here, we apply an X-ray interferometry technique to probe the solution structure and fluctuations of B-form DNA on a length scale comparable to a protein-binding site. We determine an extensive set of intrahelix distance distributions between pairs of probes placed at distinct points on the surface of the DNA duplex. The distributions of measured distances reveal the nature and extent of the thermally driven mechanical deformations of the helix. We describe these deformations in terms of elastic constants, as is common for DNA and other polymers. The average solution structure and microscopic elasticity measured by X-ray interferometry are in striking agreement with values derived from DNA–protein crystal structures and measured by force spectroscopy, with one exception. The observed microscopic torsional rigidity of DNA is much lower than is measured by single-molecule twisting experiments, suggesting that torsional rigidity increases when DNA is stretched. Looking forward, molecular-level interferometry can provide a general tool for characterizing solution-phase structural ensembles.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1218830110</identifier><identifier>PMID: 23576725</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Binding sites ; Biological Sciences ; Crystal structure ; Deoxyribonucleic acid ; Diffusion ; DNA ; DNA - chemistry ; DNA - metabolism ; DNA-Binding Proteins - metabolism ; Interferometry ; Models, Molecular ; Nucleic Acid Conformation ; PNAS Plus ; Polymers ; Proteins ; X-rays</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (16), p.E1444-E1451</ispartof><rights>Copyright National Academy of Sciences Apr 16, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-db6f6f3f653b08b791be311b0238380b0af234efd64dbbc6f7bb1de04aa7cd773</citedby><cites>FETCH-LOGICAL-c536t-db6f6f3f653b08b791be311b0238380b0af234efd64dbbc6f7bb1de04aa7cd773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/16.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631670/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631670/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23576725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Xuesong</creatorcontrib><creatorcontrib>Herschlag, Daniel</creatorcontrib><creatorcontrib>Harbury, Pehr A B</creatorcontrib><title>Structural ensemble and microscopic elasticity of freely diffusing DNA by direct measurement of fluctuations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Precisely measuring the ensemble of conformers that a macromolecule populates in solution is highly challenging. Thus, it has been difficult to confirm or falsify the predictions of nanometer-scale dynamical modeling. Here, we apply an X-ray interferometry technique to probe the solution structure and fluctuations of B-form DNA on a length scale comparable to a protein-binding site. We determine an extensive set of intrahelix distance distributions between pairs of probes placed at distinct points on the surface of the DNA duplex. The distributions of measured distances reveal the nature and extent of the thermally driven mechanical deformations of the helix. We describe these deformations in terms of elastic constants, as is common for DNA and other polymers. The average solution structure and microscopic elasticity measured by X-ray interferometry are in striking agreement with values derived from DNA–protein crystal structures and measured by force spectroscopy, with one exception. The observed microscopic torsional rigidity of DNA is much lower than is measured by single-molecule twisting experiments, suggesting that torsional rigidity increases when DNA is stretched. Looking forward, molecular-level interferometry can provide a general tool for characterizing solution-phase structural ensembles.</description><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Crystal structure</subject><subject>Deoxyribonucleic acid</subject><subject>Diffusion</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Interferometry</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Conformation</subject><subject>PNAS Plus</subject><subject>Polymers</subject><subject>Proteins</subject><subject>X-rays</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vFCEYh4nR2LV69qYkXrxs-_IxwFxMmtqqSaOH2jMBBlaamWGFmSb738u42_XjRALP--T98UPoNYEzApKdb0dTzgglSjEgBJ6gFYGWrAVv4SlaAVC5VpzyE_SilHsAaBsFz9EJZY0UkjYr1N9OeXbTnE2P_Vj8YHuPzdjhIbqcikvb6LDvTZmii9MOp4BD9r7f4S6GMJc4bvDHrxfYLhfZuwkP3pQ5-8GP02-6X_RmimksL9GzYPriXx3OU3R3ffX98vP65tunL5cXN2vXMDGtOyuCCCyIhllQVrbEekaIBcoUU2DBBMq4D53gnbVOBGkt6TxwY6TrpGSn6MPeu53t4DtXV6n59DbHweSdTibqf1_G-ENv0oNmghEhoQreHwQ5_Zx9mfQQi_N9b0af5qIJo6rhnNO2ou_-Q-_TnMcab6FaohrWqkqd76nlU0v24bgMAb00qZcm9Z8m68SbvzMc-cfqKoAPwDJ51C0-oa9I3a4ib_dIMEmbTY5F391SIAKAMCE5Y78AZTewoQ</recordid><startdate>20130416</startdate><enddate>20130416</enddate><creator>Shi, Xuesong</creator><creator>Herschlag, Daniel</creator><creator>Harbury, Pehr A B</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130416</creationdate><title>Structural ensemble and microscopic elasticity of freely diffusing DNA by direct measurement of fluctuations</title><author>Shi, Xuesong ; Herschlag, Daniel ; Harbury, Pehr A B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-db6f6f3f653b08b791be311b0238380b0af234efd64dbbc6f7bb1de04aa7cd773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Crystal structure</topic><topic>Deoxyribonucleic acid</topic><topic>Diffusion</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Interferometry</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Conformation</topic><topic>PNAS Plus</topic><topic>Polymers</topic><topic>Proteins</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Xuesong</creatorcontrib><creatorcontrib>Herschlag, Daniel</creatorcontrib><creatorcontrib>Harbury, Pehr A B</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Xuesong</au><au>Herschlag, Daniel</au><au>Harbury, Pehr A B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural ensemble and microscopic elasticity of freely diffusing DNA by direct measurement of fluctuations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-04-16</date><risdate>2013</risdate><volume>110</volume><issue>16</issue><spage>E1444</spage><epage>E1451</epage><pages>E1444-E1451</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Precisely measuring the ensemble of conformers that a macromolecule populates in solution is highly challenging. Thus, it has been difficult to confirm or falsify the predictions of nanometer-scale dynamical modeling. Here, we apply an X-ray interferometry technique to probe the solution structure and fluctuations of B-form DNA on a length scale comparable to a protein-binding site. We determine an extensive set of intrahelix distance distributions between pairs of probes placed at distinct points on the surface of the DNA duplex. The distributions of measured distances reveal the nature and extent of the thermally driven mechanical deformations of the helix. We describe these deformations in terms of elastic constants, as is common for DNA and other polymers. The average solution structure and microscopic elasticity measured by X-ray interferometry are in striking agreement with values derived from DNA–protein crystal structures and measured by force spectroscopy, with one exception. The observed microscopic torsional rigidity of DNA is much lower than is measured by single-molecule twisting experiments, suggesting that torsional rigidity increases when DNA is stretched. Looking forward, molecular-level interferometry can provide a general tool for characterizing solution-phase structural ensembles.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23576725</pmid><doi>10.1073/pnas.1218830110</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (16), p.E1444-E1451 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1218830110 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Binding sites Biological Sciences Crystal structure Deoxyribonucleic acid Diffusion DNA DNA - chemistry DNA - metabolism DNA-Binding Proteins - metabolism Interferometry Models, Molecular Nucleic Acid Conformation PNAS Plus Polymers Proteins X-rays |
title | Structural ensemble and microscopic elasticity of freely diffusing DNA by direct measurement of fluctuations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20ensemble%20and%20microscopic%20elasticity%20of%20freely%20diffusing%20DNA%20by%20direct%20measurement%20of%20fluctuations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Shi,%20Xuesong&rft.date=2013-04-16&rft.volume=110&rft.issue=16&rft.spage=E1444&rft.epage=E1451&rft.pages=E1444-E1451&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1218830110&rft_dat=%3Cproquest_cross%3E1328544429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1329185398&rft_id=info:pmid/23576725&rfr_iscdi=true |