Geometric control of vascular networks to enhance engineered tissue integration and function

Tissue vascularization and integration with host circulation remains a key barrier to the translation of engineered tissues into clinically relevant therapies. Here, we used a microtissue molding approach to demonstrate that constructs containing highly aligned "cords" of endothelial cells...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-05, Vol.110 (19), p.7586-7591
Hauptverfasser: Baranski, Jan D., Chaturvedi, Ritika R., Stevens, Kelly R., Eyckmans, Jeroen, Carvalho, Brian, Solorzano, Ricardo D., Yang, Michael T., Miller, Jordan S., Bhatia, Sangeeta N., Chen, Christopher S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7591
container_issue 19
container_start_page 7586
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Baranski, Jan D.
Chaturvedi, Ritika R.
Stevens, Kelly R.
Eyckmans, Jeroen
Carvalho, Brian
Solorzano, Ricardo D.
Yang, Michael T.
Miller, Jordan S.
Bhatia, Sangeeta N.
Chen, Christopher S.
description Tissue vascularization and integration with host circulation remains a key barrier to the translation of engineered tissues into clinically relevant therapies. Here, we used a microtissue molding approach to demonstrate that constructs containing highly aligned "cords" of endothelial cells triggered the formation of new capillaries along the length of the patterned cords. These vessels became perfused with host blood as early as 3 d post implantation and became progressively more mature through 28 d. Immunohistochemical analysis showed that the neovessels were composed of human and mouse endothelial cells and exhibited a mature phenotype, as indicated by the presence of alpha-smooth muscle actin-positive pericytes. Implantation of cords with a prescribed geometry demonstrated that they provided a template that defined the neovascular architecture in vivo. To explore the utility of this geometric control, we implanted primary rat and human hepatocyte constructs containing randomly organized endothelial networks vs. ordered cords. We found substantially enhanced hepatic survival and function in the constructs containing ordered cords following transplantation in mice. These findings demonstrate the importance of multicellular architecture in tissue integration and function, and our approach provides a unique strategy to engineer vascular architecture.
doi_str_mv 10.1073/pnas.1217796110
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1217796110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42656349</jstor_id><sourcerecordid>42656349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-3f71a854b4991857b16ba489c844d848087d69e50f3c9b861918fff289e4cdad3</originalsourceid><addsrcrecordid>eNqFkbtvFDEQxi0EIpdATQVYSkOziV_rRxMJRRCQItFAh2R5vbOXPfbsw_YG8d_j5Y7j0VCNRvObbx4fQs8ouaBE8ctdcPmCMqqUkZSSB2hFiaGNFIY8RCtCmGq0YOIEnea8IYSYVpPH6IRxSYlgfIU-30DcQkmjxz6GkuKE44DvXfbz5BIOUL7F9CXjEjGEOxc81LgeA0CCHpcx5xnwGAqskytjDNiFHg9z8EvyBD0a3JTh6SGeoU9v33y8ftfcfrh5f_36tvGtlKXhg6JOt6ITxlDdqo7KzgltvBai10ITrXppoCUD96bTklZqGAamDQjfu56foau97m7uttB7qIe4ye7SuHXpu41utH9Xwnhn1_HectnSOrQKvDoIpPh1hlzsdswepskFiHO2VBNODOeU_R_lwigiTKsqev4PuolzCvUTPynNGZPL7Ms95VPMOcFw3JsSu5hsF5Ptb5Nrx4s_zz3yv1ytwMsDsHQe5RY9Y1WrZSWe74lNLjEdEcFkK-tq_Afb7Les</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349832269</pqid></control><display><type>article</type><title>Geometric control of vascular networks to enhance engineered tissue integration and function</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Baranski, Jan D. ; Chaturvedi, Ritika R. ; Stevens, Kelly R. ; Eyckmans, Jeroen ; Carvalho, Brian ; Solorzano, Ricardo D. ; Yang, Michael T. ; Miller, Jordan S. ; Bhatia, Sangeeta N. ; Chen, Christopher S.</creator><creatorcontrib>Baranski, Jan D. ; Chaturvedi, Ritika R. ; Stevens, Kelly R. ; Eyckmans, Jeroen ; Carvalho, Brian ; Solorzano, Ricardo D. ; Yang, Michael T. ; Miller, Jordan S. ; Bhatia, Sangeeta N. ; Chen, Christopher S.</creatorcontrib><description>Tissue vascularization and integration with host circulation remains a key barrier to the translation of engineered tissues into clinically relevant therapies. Here, we used a microtissue molding approach to demonstrate that constructs containing highly aligned "cords" of endothelial cells triggered the formation of new capillaries along the length of the patterned cords. These vessels became perfused with host blood as early as 3 d post implantation and became progressively more mature through 28 d. Immunohistochemical analysis showed that the neovessels were composed of human and mouse endothelial cells and exhibited a mature phenotype, as indicated by the presence of alpha-smooth muscle actin-positive pericytes. Implantation of cords with a prescribed geometry demonstrated that they provided a template that defined the neovascular architecture in vivo. To explore the utility of this geometric control, we implanted primary rat and human hepatocyte constructs containing randomly organized endothelial networks vs. ordered cords. We found substantially enhanced hepatic survival and function in the constructs containing ordered cords following transplantation in mice. These findings demonstrate the importance of multicellular architecture in tissue integration and function, and our approach provides a unique strategy to engineer vascular architecture.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1217796110</identifier><identifier>PMID: 23610423</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actins - chemistry ; Animals ; Architecture ; Bioengineering ; Biopsy ; Blood ; Blood vessels ; Capillaries ; Cardiovascular system ; Cell aggregates ; Cells ; Collagen - chemistry ; Collagens ; endothelial cells ; Endothelium, Vascular - metabolism ; Endothelium, Vascular - physiology ; Genotype &amp; phenotype ; Hepatocytes ; Hepatocytes - cytology ; Human Umbilical Vein Endothelial Cells ; Humans ; Immunohistochemistry ; Mice ; Mice, Inbred C3H ; Muscle, Smooth - metabolism ; muscles ; Neovascularization, Physiologic ; phenotype ; Physical Sciences ; Rats ; Regeneration ; Rodents ; Time Factors ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Transplants &amp; implants</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-05, Vol.110 (19), p.7586-7591</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 7, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-3f71a854b4991857b16ba489c844d848087d69e50f3c9b861918fff289e4cdad3</citedby><cites>FETCH-LOGICAL-c566t-3f71a854b4991857b16ba489c844d848087d69e50f3c9b861918fff289e4cdad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42656349$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42656349$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23610423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baranski, Jan D.</creatorcontrib><creatorcontrib>Chaturvedi, Ritika R.</creatorcontrib><creatorcontrib>Stevens, Kelly R.</creatorcontrib><creatorcontrib>Eyckmans, Jeroen</creatorcontrib><creatorcontrib>Carvalho, Brian</creatorcontrib><creatorcontrib>Solorzano, Ricardo D.</creatorcontrib><creatorcontrib>Yang, Michael T.</creatorcontrib><creatorcontrib>Miller, Jordan S.</creatorcontrib><creatorcontrib>Bhatia, Sangeeta N.</creatorcontrib><creatorcontrib>Chen, Christopher S.</creatorcontrib><title>Geometric control of vascular networks to enhance engineered tissue integration and function</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Tissue vascularization and integration with host circulation remains a key barrier to the translation of engineered tissues into clinically relevant therapies. Here, we used a microtissue molding approach to demonstrate that constructs containing highly aligned "cords" of endothelial cells triggered the formation of new capillaries along the length of the patterned cords. These vessels became perfused with host blood as early as 3 d post implantation and became progressively more mature through 28 d. Immunohistochemical analysis showed that the neovessels were composed of human and mouse endothelial cells and exhibited a mature phenotype, as indicated by the presence of alpha-smooth muscle actin-positive pericytes. Implantation of cords with a prescribed geometry demonstrated that they provided a template that defined the neovascular architecture in vivo. To explore the utility of this geometric control, we implanted primary rat and human hepatocyte constructs containing randomly organized endothelial networks vs. ordered cords. We found substantially enhanced hepatic survival and function in the constructs containing ordered cords following transplantation in mice. These findings demonstrate the importance of multicellular architecture in tissue integration and function, and our approach provides a unique strategy to engineer vascular architecture.</description><subject>Actins - chemistry</subject><subject>Animals</subject><subject>Architecture</subject><subject>Bioengineering</subject><subject>Biopsy</subject><subject>Blood</subject><subject>Blood vessels</subject><subject>Capillaries</subject><subject>Cardiovascular system</subject><subject>Cell aggregates</subject><subject>Cells</subject><subject>Collagen - chemistry</subject><subject>Collagens</subject><subject>endothelial cells</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Endothelium, Vascular - physiology</subject><subject>Genotype &amp; phenotype</subject><subject>Hepatocytes</subject><subject>Hepatocytes - cytology</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Mice</subject><subject>Mice, Inbred C3H</subject><subject>Muscle, Smooth - metabolism</subject><subject>muscles</subject><subject>Neovascularization, Physiologic</subject><subject>phenotype</subject><subject>Physical Sciences</subject><subject>Rats</subject><subject>Regeneration</subject><subject>Rodents</subject><subject>Time Factors</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Transplants &amp; implants</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbtvFDEQxi0EIpdATQVYSkOziV_rRxMJRRCQItFAh2R5vbOXPfbsw_YG8d_j5Y7j0VCNRvObbx4fQs8ouaBE8ctdcPmCMqqUkZSSB2hFiaGNFIY8RCtCmGq0YOIEnea8IYSYVpPH6IRxSYlgfIU-30DcQkmjxz6GkuKE44DvXfbz5BIOUL7F9CXjEjGEOxc81LgeA0CCHpcx5xnwGAqskytjDNiFHg9z8EvyBD0a3JTh6SGeoU9v33y8ftfcfrh5f_36tvGtlKXhg6JOt6ITxlDdqo7KzgltvBai10ITrXppoCUD96bTklZqGAamDQjfu56foau97m7uttB7qIe4ye7SuHXpu41utH9Xwnhn1_HectnSOrQKvDoIpPh1hlzsdswepskFiHO2VBNODOeU_R_lwigiTKsqev4PuolzCvUTPynNGZPL7Ms95VPMOcFw3JsSu5hsF5Ptb5Nrx4s_zz3yv1ytwMsDsHQe5RY9Y1WrZSWe74lNLjEdEcFkK-tq_Afb7Les</recordid><startdate>20130507</startdate><enddate>20130507</enddate><creator>Baranski, Jan D.</creator><creator>Chaturvedi, Ritika R.</creator><creator>Stevens, Kelly R.</creator><creator>Eyckmans, Jeroen</creator><creator>Carvalho, Brian</creator><creator>Solorzano, Ricardo D.</creator><creator>Yang, Michael T.</creator><creator>Miller, Jordan S.</creator><creator>Bhatia, Sangeeta N.</creator><creator>Chen, Christopher S.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130507</creationdate><title>Geometric control of vascular networks to enhance engineered tissue integration and function</title><author>Baranski, Jan D. ; Chaturvedi, Ritika R. ; Stevens, Kelly R. ; Eyckmans, Jeroen ; Carvalho, Brian ; Solorzano, Ricardo D. ; Yang, Michael T. ; Miller, Jordan S. ; Bhatia, Sangeeta N. ; Chen, Christopher S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-3f71a854b4991857b16ba489c844d848087d69e50f3c9b861918fff289e4cdad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actins - chemistry</topic><topic>Animals</topic><topic>Architecture</topic><topic>Bioengineering</topic><topic>Biopsy</topic><topic>Blood</topic><topic>Blood vessels</topic><topic>Capillaries</topic><topic>Cardiovascular system</topic><topic>Cell aggregates</topic><topic>Cells</topic><topic>Collagen - chemistry</topic><topic>Collagens</topic><topic>endothelial cells</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Endothelium, Vascular - physiology</topic><topic>Genotype &amp; phenotype</topic><topic>Hepatocytes</topic><topic>Hepatocytes - cytology</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Mice</topic><topic>Mice, Inbred C3H</topic><topic>Muscle, Smooth - metabolism</topic><topic>muscles</topic><topic>Neovascularization, Physiologic</topic><topic>phenotype</topic><topic>Physical Sciences</topic><topic>Rats</topic><topic>Regeneration</topic><topic>Rodents</topic><topic>Time Factors</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baranski, Jan D.</creatorcontrib><creatorcontrib>Chaturvedi, Ritika R.</creatorcontrib><creatorcontrib>Stevens, Kelly R.</creatorcontrib><creatorcontrib>Eyckmans, Jeroen</creatorcontrib><creatorcontrib>Carvalho, Brian</creatorcontrib><creatorcontrib>Solorzano, Ricardo D.</creatorcontrib><creatorcontrib>Yang, Michael T.</creatorcontrib><creatorcontrib>Miller, Jordan S.</creatorcontrib><creatorcontrib>Bhatia, Sangeeta N.</creatorcontrib><creatorcontrib>Chen, Christopher S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranski, Jan D.</au><au>Chaturvedi, Ritika R.</au><au>Stevens, Kelly R.</au><au>Eyckmans, Jeroen</au><au>Carvalho, Brian</au><au>Solorzano, Ricardo D.</au><au>Yang, Michael T.</au><au>Miller, Jordan S.</au><au>Bhatia, Sangeeta N.</au><au>Chen, Christopher S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric control of vascular networks to enhance engineered tissue integration and function</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-05-07</date><risdate>2013</risdate><volume>110</volume><issue>19</issue><spage>7586</spage><epage>7591</epage><pages>7586-7591</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Tissue vascularization and integration with host circulation remains a key barrier to the translation of engineered tissues into clinically relevant therapies. Here, we used a microtissue molding approach to demonstrate that constructs containing highly aligned "cords" of endothelial cells triggered the formation of new capillaries along the length of the patterned cords. These vessels became perfused with host blood as early as 3 d post implantation and became progressively more mature through 28 d. Immunohistochemical analysis showed that the neovessels were composed of human and mouse endothelial cells and exhibited a mature phenotype, as indicated by the presence of alpha-smooth muscle actin-positive pericytes. Implantation of cords with a prescribed geometry demonstrated that they provided a template that defined the neovascular architecture in vivo. To explore the utility of this geometric control, we implanted primary rat and human hepatocyte constructs containing randomly organized endothelial networks vs. ordered cords. We found substantially enhanced hepatic survival and function in the constructs containing ordered cords following transplantation in mice. These findings demonstrate the importance of multicellular architecture in tissue integration and function, and our approach provides a unique strategy to engineer vascular architecture.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23610423</pmid><doi>10.1073/pnas.1217796110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-05, Vol.110 (19), p.7586-7591
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1217796110
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Actins - chemistry
Animals
Architecture
Bioengineering
Biopsy
Blood
Blood vessels
Capillaries
Cardiovascular system
Cell aggregates
Cells
Collagen - chemistry
Collagens
endothelial cells
Endothelium, Vascular - metabolism
Endothelium, Vascular - physiology
Genotype & phenotype
Hepatocytes
Hepatocytes - cytology
Human Umbilical Vein Endothelial Cells
Humans
Immunohistochemistry
Mice
Mice, Inbred C3H
Muscle, Smooth - metabolism
muscles
Neovascularization, Physiologic
phenotype
Physical Sciences
Rats
Regeneration
Rodents
Time Factors
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Transplants & implants
title Geometric control of vascular networks to enhance engineered tissue integration and function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20control%20of%20vascular%20networks%20to%20enhance%20engineered%20tissue%20integration%20and%20function&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Baranski,%20Jan%20D.&rft.date=2013-05-07&rft.volume=110&rft.issue=19&rft.spage=7586&rft.epage=7591&rft.pages=7586-7591&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1217796110&rft_dat=%3Cjstor_cross%3E42656349%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349832269&rft_id=info:pmid/23610423&rft_jstor_id=42656349&rfr_iscdi=true