Geometric control of vascular networks to enhance engineered tissue integration and function
Tissue vascularization and integration with host circulation remains a key barrier to the translation of engineered tissues into clinically relevant therapies. Here, we used a microtissue molding approach to demonstrate that constructs containing highly aligned "cords" of endothelial cells...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-05, Vol.110 (19), p.7586-7591 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7591 |
---|---|
container_issue | 19 |
container_start_page | 7586 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Baranski, Jan D. Chaturvedi, Ritika R. Stevens, Kelly R. Eyckmans, Jeroen Carvalho, Brian Solorzano, Ricardo D. Yang, Michael T. Miller, Jordan S. Bhatia, Sangeeta N. Chen, Christopher S. |
description | Tissue vascularization and integration with host circulation remains a key barrier to the translation of engineered tissues into clinically relevant therapies. Here, we used a microtissue molding approach to demonstrate that constructs containing highly aligned "cords" of endothelial cells triggered the formation of new capillaries along the length of the patterned cords. These vessels became perfused with host blood as early as 3 d post implantation and became progressively more mature through 28 d. Immunohistochemical analysis showed that the neovessels were composed of human and mouse endothelial cells and exhibited a mature phenotype, as indicated by the presence of alpha-smooth muscle actin-positive pericytes. Implantation of cords with a prescribed geometry demonstrated that they provided a template that defined the neovascular architecture in vivo. To explore the utility of this geometric control, we implanted primary rat and human hepatocyte constructs containing randomly organized endothelial networks vs. ordered cords. We found substantially enhanced hepatic survival and function in the constructs containing ordered cords following transplantation in mice. These findings demonstrate the importance of multicellular architecture in tissue integration and function, and our approach provides a unique strategy to engineer vascular architecture. |
doi_str_mv | 10.1073/pnas.1217796110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1217796110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42656349</jstor_id><sourcerecordid>42656349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-3f71a854b4991857b16ba489c844d848087d69e50f3c9b861918fff289e4cdad3</originalsourceid><addsrcrecordid>eNqFkbtvFDEQxi0EIpdATQVYSkOziV_rRxMJRRCQItFAh2R5vbOXPfbsw_YG8d_j5Y7j0VCNRvObbx4fQs8ouaBE8ctdcPmCMqqUkZSSB2hFiaGNFIY8RCtCmGq0YOIEnea8IYSYVpPH6IRxSYlgfIU-30DcQkmjxz6GkuKE44DvXfbz5BIOUL7F9CXjEjGEOxc81LgeA0CCHpcx5xnwGAqskytjDNiFHg9z8EvyBD0a3JTh6SGeoU9v33y8ftfcfrh5f_36tvGtlKXhg6JOt6ITxlDdqo7KzgltvBai10ITrXppoCUD96bTklZqGAamDQjfu56foau97m7uttB7qIe4ye7SuHXpu41utH9Xwnhn1_HectnSOrQKvDoIpPh1hlzsdswepskFiHO2VBNODOeU_R_lwigiTKsqev4PuolzCvUTPynNGZPL7Ms95VPMOcFw3JsSu5hsF5Ptb5Nrx4s_zz3yv1ytwMsDsHQe5RY9Y1WrZSWe74lNLjEdEcFkK-tq_Afb7Les</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349832269</pqid></control><display><type>article</type><title>Geometric control of vascular networks to enhance engineered tissue integration and function</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Baranski, Jan D. ; Chaturvedi, Ritika R. ; Stevens, Kelly R. ; Eyckmans, Jeroen ; Carvalho, Brian ; Solorzano, Ricardo D. ; Yang, Michael T. ; Miller, Jordan S. ; Bhatia, Sangeeta N. ; Chen, Christopher S.</creator><creatorcontrib>Baranski, Jan D. ; Chaturvedi, Ritika R. ; Stevens, Kelly R. ; Eyckmans, Jeroen ; Carvalho, Brian ; Solorzano, Ricardo D. ; Yang, Michael T. ; Miller, Jordan S. ; Bhatia, Sangeeta N. ; Chen, Christopher S.</creatorcontrib><description>Tissue vascularization and integration with host circulation remains a key barrier to the translation of engineered tissues into clinically relevant therapies. Here, we used a microtissue molding approach to demonstrate that constructs containing highly aligned "cords" of endothelial cells triggered the formation of new capillaries along the length of the patterned cords. These vessels became perfused with host blood as early as 3 d post implantation and became progressively more mature through 28 d. Immunohistochemical analysis showed that the neovessels were composed of human and mouse endothelial cells and exhibited a mature phenotype, as indicated by the presence of alpha-smooth muscle actin-positive pericytes. Implantation of cords with a prescribed geometry demonstrated that they provided a template that defined the neovascular architecture in vivo. To explore the utility of this geometric control, we implanted primary rat and human hepatocyte constructs containing randomly organized endothelial networks vs. ordered cords. We found substantially enhanced hepatic survival and function in the constructs containing ordered cords following transplantation in mice. These findings demonstrate the importance of multicellular architecture in tissue integration and function, and our approach provides a unique strategy to engineer vascular architecture.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1217796110</identifier><identifier>PMID: 23610423</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actins - chemistry ; Animals ; Architecture ; Bioengineering ; Biopsy ; Blood ; Blood vessels ; Capillaries ; Cardiovascular system ; Cell aggregates ; Cells ; Collagen - chemistry ; Collagens ; endothelial cells ; Endothelium, Vascular - metabolism ; Endothelium, Vascular - physiology ; Genotype & phenotype ; Hepatocytes ; Hepatocytes - cytology ; Human Umbilical Vein Endothelial Cells ; Humans ; Immunohistochemistry ; Mice ; Mice, Inbred C3H ; Muscle, Smooth - metabolism ; muscles ; Neovascularization, Physiologic ; phenotype ; Physical Sciences ; Rats ; Regeneration ; Rodents ; Time Factors ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Transplants & implants</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-05, Vol.110 (19), p.7586-7591</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 7, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-3f71a854b4991857b16ba489c844d848087d69e50f3c9b861918fff289e4cdad3</citedby><cites>FETCH-LOGICAL-c566t-3f71a854b4991857b16ba489c844d848087d69e50f3c9b861918fff289e4cdad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42656349$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42656349$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23610423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baranski, Jan D.</creatorcontrib><creatorcontrib>Chaturvedi, Ritika R.</creatorcontrib><creatorcontrib>Stevens, Kelly R.</creatorcontrib><creatorcontrib>Eyckmans, Jeroen</creatorcontrib><creatorcontrib>Carvalho, Brian</creatorcontrib><creatorcontrib>Solorzano, Ricardo D.</creatorcontrib><creatorcontrib>Yang, Michael T.</creatorcontrib><creatorcontrib>Miller, Jordan S.</creatorcontrib><creatorcontrib>Bhatia, Sangeeta N.</creatorcontrib><creatorcontrib>Chen, Christopher S.</creatorcontrib><title>Geometric control of vascular networks to enhance engineered tissue integration and function</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Tissue vascularization and integration with host circulation remains a key barrier to the translation of engineered tissues into clinically relevant therapies. Here, we used a microtissue molding approach to demonstrate that constructs containing highly aligned "cords" of endothelial cells triggered the formation of new capillaries along the length of the patterned cords. These vessels became perfused with host blood as early as 3 d post implantation and became progressively more mature through 28 d. Immunohistochemical analysis showed that the neovessels were composed of human and mouse endothelial cells and exhibited a mature phenotype, as indicated by the presence of alpha-smooth muscle actin-positive pericytes. Implantation of cords with a prescribed geometry demonstrated that they provided a template that defined the neovascular architecture in vivo. To explore the utility of this geometric control, we implanted primary rat and human hepatocyte constructs containing randomly organized endothelial networks vs. ordered cords. We found substantially enhanced hepatic survival and function in the constructs containing ordered cords following transplantation in mice. These findings demonstrate the importance of multicellular architecture in tissue integration and function, and our approach provides a unique strategy to engineer vascular architecture.</description><subject>Actins - chemistry</subject><subject>Animals</subject><subject>Architecture</subject><subject>Bioengineering</subject><subject>Biopsy</subject><subject>Blood</subject><subject>Blood vessels</subject><subject>Capillaries</subject><subject>Cardiovascular system</subject><subject>Cell aggregates</subject><subject>Cells</subject><subject>Collagen - chemistry</subject><subject>Collagens</subject><subject>endothelial cells</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Endothelium, Vascular - physiology</subject><subject>Genotype & phenotype</subject><subject>Hepatocytes</subject><subject>Hepatocytes - cytology</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Mice</subject><subject>Mice, Inbred C3H</subject><subject>Muscle, Smooth - metabolism</subject><subject>muscles</subject><subject>Neovascularization, Physiologic</subject><subject>phenotype</subject><subject>Physical Sciences</subject><subject>Rats</subject><subject>Regeneration</subject><subject>Rodents</subject><subject>Time Factors</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Transplants & implants</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbtvFDEQxi0EIpdATQVYSkOziV_rRxMJRRCQItFAh2R5vbOXPfbsw_YG8d_j5Y7j0VCNRvObbx4fQs8ouaBE8ctdcPmCMqqUkZSSB2hFiaGNFIY8RCtCmGq0YOIEnea8IYSYVpPH6IRxSYlgfIU-30DcQkmjxz6GkuKE44DvXfbz5BIOUL7F9CXjEjGEOxc81LgeA0CCHpcx5xnwGAqskytjDNiFHg9z8EvyBD0a3JTh6SGeoU9v33y8ftfcfrh5f_36tvGtlKXhg6JOt6ITxlDdqo7KzgltvBai10ITrXppoCUD96bTklZqGAamDQjfu56foau97m7uttB7qIe4ye7SuHXpu41utH9Xwnhn1_HectnSOrQKvDoIpPh1hlzsdswepskFiHO2VBNODOeU_R_lwigiTKsqev4PuolzCvUTPynNGZPL7Ms95VPMOcFw3JsSu5hsF5Ptb5Nrx4s_zz3yv1ytwMsDsHQe5RY9Y1WrZSWe74lNLjEdEcFkK-tq_Afb7Les</recordid><startdate>20130507</startdate><enddate>20130507</enddate><creator>Baranski, Jan D.</creator><creator>Chaturvedi, Ritika R.</creator><creator>Stevens, Kelly R.</creator><creator>Eyckmans, Jeroen</creator><creator>Carvalho, Brian</creator><creator>Solorzano, Ricardo D.</creator><creator>Yang, Michael T.</creator><creator>Miller, Jordan S.</creator><creator>Bhatia, Sangeeta N.</creator><creator>Chen, Christopher S.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130507</creationdate><title>Geometric control of vascular networks to enhance engineered tissue integration and function</title><author>Baranski, Jan D. ; Chaturvedi, Ritika R. ; Stevens, Kelly R. ; Eyckmans, Jeroen ; Carvalho, Brian ; Solorzano, Ricardo D. ; Yang, Michael T. ; Miller, Jordan S. ; Bhatia, Sangeeta N. ; Chen, Christopher S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-3f71a854b4991857b16ba489c844d848087d69e50f3c9b861918fff289e4cdad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actins - chemistry</topic><topic>Animals</topic><topic>Architecture</topic><topic>Bioengineering</topic><topic>Biopsy</topic><topic>Blood</topic><topic>Blood vessels</topic><topic>Capillaries</topic><topic>Cardiovascular system</topic><topic>Cell aggregates</topic><topic>Cells</topic><topic>Collagen - chemistry</topic><topic>Collagens</topic><topic>endothelial cells</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Endothelium, Vascular - physiology</topic><topic>Genotype & phenotype</topic><topic>Hepatocytes</topic><topic>Hepatocytes - cytology</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Mice</topic><topic>Mice, Inbred C3H</topic><topic>Muscle, Smooth - metabolism</topic><topic>muscles</topic><topic>Neovascularization, Physiologic</topic><topic>phenotype</topic><topic>Physical Sciences</topic><topic>Rats</topic><topic>Regeneration</topic><topic>Rodents</topic><topic>Time Factors</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baranski, Jan D.</creatorcontrib><creatorcontrib>Chaturvedi, Ritika R.</creatorcontrib><creatorcontrib>Stevens, Kelly R.</creatorcontrib><creatorcontrib>Eyckmans, Jeroen</creatorcontrib><creatorcontrib>Carvalho, Brian</creatorcontrib><creatorcontrib>Solorzano, Ricardo D.</creatorcontrib><creatorcontrib>Yang, Michael T.</creatorcontrib><creatorcontrib>Miller, Jordan S.</creatorcontrib><creatorcontrib>Bhatia, Sangeeta N.</creatorcontrib><creatorcontrib>Chen, Christopher S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranski, Jan D.</au><au>Chaturvedi, Ritika R.</au><au>Stevens, Kelly R.</au><au>Eyckmans, Jeroen</au><au>Carvalho, Brian</au><au>Solorzano, Ricardo D.</au><au>Yang, Michael T.</au><au>Miller, Jordan S.</au><au>Bhatia, Sangeeta N.</au><au>Chen, Christopher S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric control of vascular networks to enhance engineered tissue integration and function</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-05-07</date><risdate>2013</risdate><volume>110</volume><issue>19</issue><spage>7586</spage><epage>7591</epage><pages>7586-7591</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Tissue vascularization and integration with host circulation remains a key barrier to the translation of engineered tissues into clinically relevant therapies. Here, we used a microtissue molding approach to demonstrate that constructs containing highly aligned "cords" of endothelial cells triggered the formation of new capillaries along the length of the patterned cords. These vessels became perfused with host blood as early as 3 d post implantation and became progressively more mature through 28 d. Immunohistochemical analysis showed that the neovessels were composed of human and mouse endothelial cells and exhibited a mature phenotype, as indicated by the presence of alpha-smooth muscle actin-positive pericytes. Implantation of cords with a prescribed geometry demonstrated that they provided a template that defined the neovascular architecture in vivo. To explore the utility of this geometric control, we implanted primary rat and human hepatocyte constructs containing randomly organized endothelial networks vs. ordered cords. We found substantially enhanced hepatic survival and function in the constructs containing ordered cords following transplantation in mice. These findings demonstrate the importance of multicellular architecture in tissue integration and function, and our approach provides a unique strategy to engineer vascular architecture.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23610423</pmid><doi>10.1073/pnas.1217796110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-05, Vol.110 (19), p.7586-7591 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1217796110 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Actins - chemistry Animals Architecture Bioengineering Biopsy Blood Blood vessels Capillaries Cardiovascular system Cell aggregates Cells Collagen - chemistry Collagens endothelial cells Endothelium, Vascular - metabolism Endothelium, Vascular - physiology Genotype & phenotype Hepatocytes Hepatocytes - cytology Human Umbilical Vein Endothelial Cells Humans Immunohistochemistry Mice Mice, Inbred C3H Muscle, Smooth - metabolism muscles Neovascularization, Physiologic phenotype Physical Sciences Rats Regeneration Rodents Time Factors Tissue engineering Tissue Engineering - methods Tissue Scaffolds - chemistry Transplants & implants |
title | Geometric control of vascular networks to enhance engineered tissue integration and function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20control%20of%20vascular%20networks%20to%20enhance%20engineered%20tissue%20integration%20and%20function&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Baranski,%20Jan%20D.&rft.date=2013-05-07&rft.volume=110&rft.issue=19&rft.spage=7586&rft.epage=7591&rft.pages=7586-7591&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1217796110&rft_dat=%3Cjstor_cross%3E42656349%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349832269&rft_id=info:pmid/23610423&rft_jstor_id=42656349&rfr_iscdi=true |