Evolutionary layering and the limits to cellular perfection
Although observations from biochemistry and cell biology seemingly illustrate hundreds of examples of exquisite molecular adaptations, the fact that experimental manipulation can often result in improvements in cellular infrastructure raises the question as to what ultimately limits the level of mol...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-11, Vol.109 (46), p.18851-18856 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18856 |
---|---|
container_issue | 46 |
container_start_page | 18851 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Lynch, Michael |
description | Although observations from biochemistry and cell biology seemingly illustrate hundreds of examples of exquisite molecular adaptations, the fact that experimental manipulation can often result in improvements in cellular infrastructure raises the question as to what ultimately limits the level of molecular perfection achievable by natural selection. Here, it is argued that random genetic drift can impose a strong barrier to the advancement of molecular refinements by adaptive processes. Moreover, although substantial improvements in fitness may sometimes be accomplished via the emergence of novel cellular features that improve on previously established mechanisms, such advances are expected to often be transient, with overall fitness eventually returning to the level before incorporation of the genetic novelty. As a consequence of such changes, increased molecular/cellular complexity can arise by Darwinian processes, while yielding no long-term increase in adaptation and imposing increased energetic and mutational costs. |
doi_str_mv | 10.1073/pnas.1216130109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1216130109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41830114</jstor_id><sourcerecordid>41830114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-7afda36908f064c0e6ca942b99d3544cc4f616f4405554f7c5448b8b9b05d7e23</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAmIxKWXtDPxR2xVQkJVC0iVOEDPluPYW6-y8WInlfrf42iXLXCxJc9v3rzxI-QtwjlCSy92o8nn2KBACgjqGVmVE2vBFDwnK4CmrSVr2Al5lfMGABSX8JKcNBSRUypX5PL6IQ7zFOJo0mM1mEeXwriuzNhX072rhrANU66mWFk3DPNgUrVzyTu7dLwmL7wZsntzuE_J3c31z6uv9e33L9-uPt_Wlqlmqlvje0OFAulBMAtOWKNY0ynVU86YtcwLFJ4x4Jwz39ryKDvZqQ5437qGnpJPe93d3G1db904JTPoXQrbYlpHE_S_lTHc63V80JQDRSGLwNlBIMVfs8uT3oa8LGRGF-esEVuUspUUC_rxP3QT5zSW9QrFy0e3UkKhLvaUTTHn5PzRDIJegtFLMPopmNLx_u8djvyfJApQHYCl80lOaSZ0cccXb-_2yCZPMR0ZhrLMQFbqH_Z1b6I26xSyvvvRAAqA4mIZ8htHIKZJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1152167880</pqid></control><display><type>article</type><title>Evolutionary layering and the limits to cellular perfection</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lynch, Michael</creator><creatorcontrib>Lynch, Michael</creatorcontrib><description>Although observations from biochemistry and cell biology seemingly illustrate hundreds of examples of exquisite molecular adaptations, the fact that experimental manipulation can often result in improvements in cellular infrastructure raises the question as to what ultimately limits the level of molecular perfection achievable by natural selection. Here, it is argued that random genetic drift can impose a strong barrier to the advancement of molecular refinements by adaptive processes. Moreover, although substantial improvements in fitness may sometimes be accomplished via the emergence of novel cellular features that improve on previously established mechanisms, such advances are expected to often be transient, with overall fitness eventually returning to the level before incorporation of the genetic novelty. As a consequence of such changes, increased molecular/cellular complexity can arise by Darwinian processes, while yielding no long-term increase in adaptation and imposing increased energetic and mutational costs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1216130109</identifier><identifier>PMID: 23115338</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alleles ; Biochemistry ; Biological adaptation ; Biological evolution ; Biological Sciences ; cell biology ; Cellular biology ; Ecological competition ; Epigenesis, Genetic - physiology ; Evolution ; Evolution, Molecular ; Evolutionary biology ; Evolutionary genetics ; Genetic Drift ; Genetic mutation ; Genetics ; infrastructure ; Manipulation ; Models, Biological ; Mutation - physiology ; Natural selection ; Perfection ; Physical Sciences ; Population size ; Selection, Genetic</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (46), p.18851-18856</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 13, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-7afda36908f064c0e6ca942b99d3544cc4f616f4405554f7c5448b8b9b05d7e23</citedby><cites>FETCH-LOGICAL-c492t-7afda36908f064c0e6ca942b99d3544cc4f616f4405554f7c5448b8b9b05d7e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/46.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41830114$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41830114$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23115338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lynch, Michael</creatorcontrib><title>Evolutionary layering and the limits to cellular perfection</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Although observations from biochemistry and cell biology seemingly illustrate hundreds of examples of exquisite molecular adaptations, the fact that experimental manipulation can often result in improvements in cellular infrastructure raises the question as to what ultimately limits the level of molecular perfection achievable by natural selection. Here, it is argued that random genetic drift can impose a strong barrier to the advancement of molecular refinements by adaptive processes. Moreover, although substantial improvements in fitness may sometimes be accomplished via the emergence of novel cellular features that improve on previously established mechanisms, such advances are expected to often be transient, with overall fitness eventually returning to the level before incorporation of the genetic novelty. As a consequence of such changes, increased molecular/cellular complexity can arise by Darwinian processes, while yielding no long-term increase in adaptation and imposing increased energetic and mutational costs.</description><subject>Alleles</subject><subject>Biochemistry</subject><subject>Biological adaptation</subject><subject>Biological evolution</subject><subject>Biological Sciences</subject><subject>cell biology</subject><subject>Cellular biology</subject><subject>Ecological competition</subject><subject>Epigenesis, Genetic - physiology</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary biology</subject><subject>Evolutionary genetics</subject><subject>Genetic Drift</subject><subject>Genetic mutation</subject><subject>Genetics</subject><subject>infrastructure</subject><subject>Manipulation</subject><subject>Models, Biological</subject><subject>Mutation - physiology</subject><subject>Natural selection</subject><subject>Perfection</subject><subject>Physical Sciences</subject><subject>Population size</subject><subject>Selection, Genetic</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EokvhzAmIxKWXtDPxR2xVQkJVC0iVOEDPluPYW6-y8WInlfrf42iXLXCxJc9v3rzxI-QtwjlCSy92o8nn2KBACgjqGVmVE2vBFDwnK4CmrSVr2Al5lfMGABSX8JKcNBSRUypX5PL6IQ7zFOJo0mM1mEeXwriuzNhX072rhrANU66mWFk3DPNgUrVzyTu7dLwmL7wZsntzuE_J3c31z6uv9e33L9-uPt_Wlqlmqlvje0OFAulBMAtOWKNY0ynVU86YtcwLFJ4x4Jwz39ryKDvZqQ5437qGnpJPe93d3G1db904JTPoXQrbYlpHE_S_lTHc63V80JQDRSGLwNlBIMVfs8uT3oa8LGRGF-esEVuUspUUC_rxP3QT5zSW9QrFy0e3UkKhLvaUTTHn5PzRDIJegtFLMPopmNLx_u8djvyfJApQHYCl80lOaSZ0cccXb-_2yCZPMR0ZhrLMQFbqH_Z1b6I26xSyvvvRAAqA4mIZ8htHIKZJ</recordid><startdate>20121113</startdate><enddate>20121113</enddate><creator>Lynch, Michael</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20121113</creationdate><title>Evolutionary layering and the limits to cellular perfection</title><author>Lynch, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-7afda36908f064c0e6ca942b99d3544cc4f616f4405554f7c5448b8b9b05d7e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alleles</topic><topic>Biochemistry</topic><topic>Biological adaptation</topic><topic>Biological evolution</topic><topic>Biological Sciences</topic><topic>cell biology</topic><topic>Cellular biology</topic><topic>Ecological competition</topic><topic>Epigenesis, Genetic - physiology</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary biology</topic><topic>Evolutionary genetics</topic><topic>Genetic Drift</topic><topic>Genetic mutation</topic><topic>Genetics</topic><topic>infrastructure</topic><topic>Manipulation</topic><topic>Models, Biological</topic><topic>Mutation - physiology</topic><topic>Natural selection</topic><topic>Perfection</topic><topic>Physical Sciences</topic><topic>Population size</topic><topic>Selection, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lynch, Michael</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lynch, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary layering and the limits to cellular perfection</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-11-13</date><risdate>2012</risdate><volume>109</volume><issue>46</issue><spage>18851</spage><epage>18856</epage><pages>18851-18856</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Although observations from biochemistry and cell biology seemingly illustrate hundreds of examples of exquisite molecular adaptations, the fact that experimental manipulation can often result in improvements in cellular infrastructure raises the question as to what ultimately limits the level of molecular perfection achievable by natural selection. Here, it is argued that random genetic drift can impose a strong barrier to the advancement of molecular refinements by adaptive processes. Moreover, although substantial improvements in fitness may sometimes be accomplished via the emergence of novel cellular features that improve on previously established mechanisms, such advances are expected to often be transient, with overall fitness eventually returning to the level before incorporation of the genetic novelty. As a consequence of such changes, increased molecular/cellular complexity can arise by Darwinian processes, while yielding no long-term increase in adaptation and imposing increased energetic and mutational costs.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23115338</pmid><doi>10.1073/pnas.1216130109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (46), p.18851-18856 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1216130109 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alleles Biochemistry Biological adaptation Biological evolution Biological Sciences cell biology Cellular biology Ecological competition Epigenesis, Genetic - physiology Evolution Evolution, Molecular Evolutionary biology Evolutionary genetics Genetic Drift Genetic mutation Genetics infrastructure Manipulation Models, Biological Mutation - physiology Natural selection Perfection Physical Sciences Population size Selection, Genetic |
title | Evolutionary layering and the limits to cellular perfection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20layering%20and%20the%20limits%20to%20cellular%20perfection&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lynch,%20Michael&rft.date=2012-11-13&rft.volume=109&rft.issue=46&rft.spage=18851&rft.epage=18856&rft.pages=18851-18856&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1216130109&rft_dat=%3Cjstor_cross%3E41830114%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1152167880&rft_id=info:pmid/23115338&rft_jstor_id=41830114&rfr_iscdi=true |