Evolutionary layering and the limits to cellular perfection

Although observations from biochemistry and cell biology seemingly illustrate hundreds of examples of exquisite molecular adaptations, the fact that experimental manipulation can often result in improvements in cellular infrastructure raises the question as to what ultimately limits the level of mol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-11, Vol.109 (46), p.18851-18856
1. Verfasser: Lynch, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18856
container_issue 46
container_start_page 18851
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Lynch, Michael
description Although observations from biochemistry and cell biology seemingly illustrate hundreds of examples of exquisite molecular adaptations, the fact that experimental manipulation can often result in improvements in cellular infrastructure raises the question as to what ultimately limits the level of molecular perfection achievable by natural selection. Here, it is argued that random genetic drift can impose a strong barrier to the advancement of molecular refinements by adaptive processes. Moreover, although substantial improvements in fitness may sometimes be accomplished via the emergence of novel cellular features that improve on previously established mechanisms, such advances are expected to often be transient, with overall fitness eventually returning to the level before incorporation of the genetic novelty. As a consequence of such changes, increased molecular/cellular complexity can arise by Darwinian processes, while yielding no long-term increase in adaptation and imposing increased energetic and mutational costs.
doi_str_mv 10.1073/pnas.1216130109
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1216130109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41830114</jstor_id><sourcerecordid>41830114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-7afda36908f064c0e6ca942b99d3544cc4f616f4405554f7c5448b8b9b05d7e23</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAmIxKWXtDPxR2xVQkJVC0iVOEDPluPYW6-y8WInlfrf42iXLXCxJc9v3rzxI-QtwjlCSy92o8nn2KBACgjqGVmVE2vBFDwnK4CmrSVr2Al5lfMGABSX8JKcNBSRUypX5PL6IQ7zFOJo0mM1mEeXwriuzNhX072rhrANU66mWFk3DPNgUrVzyTu7dLwmL7wZsntzuE_J3c31z6uv9e33L9-uPt_Wlqlmqlvje0OFAulBMAtOWKNY0ynVU86YtcwLFJ4x4Jwz39ryKDvZqQ5437qGnpJPe93d3G1db904JTPoXQrbYlpHE_S_lTHc63V80JQDRSGLwNlBIMVfs8uT3oa8LGRGF-esEVuUspUUC_rxP3QT5zSW9QrFy0e3UkKhLvaUTTHn5PzRDIJegtFLMPopmNLx_u8djvyfJApQHYCl80lOaSZ0cccXb-_2yCZPMR0ZhrLMQFbqH_Z1b6I26xSyvvvRAAqA4mIZ8htHIKZJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1152167880</pqid></control><display><type>article</type><title>Evolutionary layering and the limits to cellular perfection</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lynch, Michael</creator><creatorcontrib>Lynch, Michael</creatorcontrib><description>Although observations from biochemistry and cell biology seemingly illustrate hundreds of examples of exquisite molecular adaptations, the fact that experimental manipulation can often result in improvements in cellular infrastructure raises the question as to what ultimately limits the level of molecular perfection achievable by natural selection. Here, it is argued that random genetic drift can impose a strong barrier to the advancement of molecular refinements by adaptive processes. Moreover, although substantial improvements in fitness may sometimes be accomplished via the emergence of novel cellular features that improve on previously established mechanisms, such advances are expected to often be transient, with overall fitness eventually returning to the level before incorporation of the genetic novelty. As a consequence of such changes, increased molecular/cellular complexity can arise by Darwinian processes, while yielding no long-term increase in adaptation and imposing increased energetic and mutational costs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1216130109</identifier><identifier>PMID: 23115338</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alleles ; Biochemistry ; Biological adaptation ; Biological evolution ; Biological Sciences ; cell biology ; Cellular biology ; Ecological competition ; Epigenesis, Genetic - physiology ; Evolution ; Evolution, Molecular ; Evolutionary biology ; Evolutionary genetics ; Genetic Drift ; Genetic mutation ; Genetics ; infrastructure ; Manipulation ; Models, Biological ; Mutation - physiology ; Natural selection ; Perfection ; Physical Sciences ; Population size ; Selection, Genetic</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (46), p.18851-18856</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 13, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-7afda36908f064c0e6ca942b99d3544cc4f616f4405554f7c5448b8b9b05d7e23</citedby><cites>FETCH-LOGICAL-c492t-7afda36908f064c0e6ca942b99d3544cc4f616f4405554f7c5448b8b9b05d7e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/46.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41830114$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41830114$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23115338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lynch, Michael</creatorcontrib><title>Evolutionary layering and the limits to cellular perfection</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Although observations from biochemistry and cell biology seemingly illustrate hundreds of examples of exquisite molecular adaptations, the fact that experimental manipulation can often result in improvements in cellular infrastructure raises the question as to what ultimately limits the level of molecular perfection achievable by natural selection. Here, it is argued that random genetic drift can impose a strong barrier to the advancement of molecular refinements by adaptive processes. Moreover, although substantial improvements in fitness may sometimes be accomplished via the emergence of novel cellular features that improve on previously established mechanisms, such advances are expected to often be transient, with overall fitness eventually returning to the level before incorporation of the genetic novelty. As a consequence of such changes, increased molecular/cellular complexity can arise by Darwinian processes, while yielding no long-term increase in adaptation and imposing increased energetic and mutational costs.</description><subject>Alleles</subject><subject>Biochemistry</subject><subject>Biological adaptation</subject><subject>Biological evolution</subject><subject>Biological Sciences</subject><subject>cell biology</subject><subject>Cellular biology</subject><subject>Ecological competition</subject><subject>Epigenesis, Genetic - physiology</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary biology</subject><subject>Evolutionary genetics</subject><subject>Genetic Drift</subject><subject>Genetic mutation</subject><subject>Genetics</subject><subject>infrastructure</subject><subject>Manipulation</subject><subject>Models, Biological</subject><subject>Mutation - physiology</subject><subject>Natural selection</subject><subject>Perfection</subject><subject>Physical Sciences</subject><subject>Population size</subject><subject>Selection, Genetic</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EokvhzAmIxKWXtDPxR2xVQkJVC0iVOEDPluPYW6-y8WInlfrf42iXLXCxJc9v3rzxI-QtwjlCSy92o8nn2KBACgjqGVmVE2vBFDwnK4CmrSVr2Al5lfMGABSX8JKcNBSRUypX5PL6IQ7zFOJo0mM1mEeXwriuzNhX072rhrANU66mWFk3DPNgUrVzyTu7dLwmL7wZsntzuE_J3c31z6uv9e33L9-uPt_Wlqlmqlvje0OFAulBMAtOWKNY0ynVU86YtcwLFJ4x4Jwz39ryKDvZqQ5437qGnpJPe93d3G1db904JTPoXQrbYlpHE_S_lTHc63V80JQDRSGLwNlBIMVfs8uT3oa8LGRGF-esEVuUspUUC_rxP3QT5zSW9QrFy0e3UkKhLvaUTTHn5PzRDIJegtFLMPopmNLx_u8djvyfJApQHYCl80lOaSZ0cccXb-_2yCZPMR0ZhrLMQFbqH_Z1b6I26xSyvvvRAAqA4mIZ8htHIKZJ</recordid><startdate>20121113</startdate><enddate>20121113</enddate><creator>Lynch, Michael</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20121113</creationdate><title>Evolutionary layering and the limits to cellular perfection</title><author>Lynch, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-7afda36908f064c0e6ca942b99d3544cc4f616f4405554f7c5448b8b9b05d7e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alleles</topic><topic>Biochemistry</topic><topic>Biological adaptation</topic><topic>Biological evolution</topic><topic>Biological Sciences</topic><topic>cell biology</topic><topic>Cellular biology</topic><topic>Ecological competition</topic><topic>Epigenesis, Genetic - physiology</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary biology</topic><topic>Evolutionary genetics</topic><topic>Genetic Drift</topic><topic>Genetic mutation</topic><topic>Genetics</topic><topic>infrastructure</topic><topic>Manipulation</topic><topic>Models, Biological</topic><topic>Mutation - physiology</topic><topic>Natural selection</topic><topic>Perfection</topic><topic>Physical Sciences</topic><topic>Population size</topic><topic>Selection, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lynch, Michael</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lynch, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary layering and the limits to cellular perfection</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-11-13</date><risdate>2012</risdate><volume>109</volume><issue>46</issue><spage>18851</spage><epage>18856</epage><pages>18851-18856</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Although observations from biochemistry and cell biology seemingly illustrate hundreds of examples of exquisite molecular adaptations, the fact that experimental manipulation can often result in improvements in cellular infrastructure raises the question as to what ultimately limits the level of molecular perfection achievable by natural selection. Here, it is argued that random genetic drift can impose a strong barrier to the advancement of molecular refinements by adaptive processes. Moreover, although substantial improvements in fitness may sometimes be accomplished via the emergence of novel cellular features that improve on previously established mechanisms, such advances are expected to often be transient, with overall fitness eventually returning to the level before incorporation of the genetic novelty. As a consequence of such changes, increased molecular/cellular complexity can arise by Darwinian processes, while yielding no long-term increase in adaptation and imposing increased energetic and mutational costs.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23115338</pmid><doi>10.1073/pnas.1216130109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (46), p.18851-18856
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1216130109
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alleles
Biochemistry
Biological adaptation
Biological evolution
Biological Sciences
cell biology
Cellular biology
Ecological competition
Epigenesis, Genetic - physiology
Evolution
Evolution, Molecular
Evolutionary biology
Evolutionary genetics
Genetic Drift
Genetic mutation
Genetics
infrastructure
Manipulation
Models, Biological
Mutation - physiology
Natural selection
Perfection
Physical Sciences
Population size
Selection, Genetic
title Evolutionary layering and the limits to cellular perfection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20layering%20and%20the%20limits%20to%20cellular%20perfection&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lynch,%20Michael&rft.date=2012-11-13&rft.volume=109&rft.issue=46&rft.spage=18851&rft.epage=18856&rft.pages=18851-18856&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1216130109&rft_dat=%3Cjstor_cross%3E41830114%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1152167880&rft_id=info:pmid/23115338&rft_jstor_id=41830114&rfr_iscdi=true