Hyperspectral remote sensing of foliar nitrogen content

A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-01, Vol.110 (3), p.811-812
Hauptverfasser: Knyazikhin, Yuri, Schull, Mitchell A., Stenberg, Pauline, Mõttus, Matti, Rautiainen, Miina, Yang, Yan, Marshak, Alexander, Carmona, Pedro Latorre, Kaufmann, Robert K., Lewis, Philip, Disney, Mathias I., Vanderbilt, Vern, Davis, Anthony B., Baret, Frédéric, Jacquemoud, Stéphane, Lyapustin, Alexei, Myneni, Ranga B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 812
container_issue 3
container_start_page 811
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Knyazikhin, Yuri
Schull, Mitchell A.
Stenberg, Pauline
Mõttus, Matti
Rautiainen, Miina
Yang, Yan
Marshak, Alexander
Carmona, Pedro Latorre
Kaufmann, Robert K.
Lewis, Philip
Disney, Mathias I.
Vanderbilt, Vern
Davis, Anthony B.
Baret, Frédéric
Jacquemoud, Stéphane
Lyapustin, Alexei
Myneni, Ranga B.
description A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact—it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423–855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710–790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.
doi_str_mv 10.1073/pnas.1210196109
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1210196109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42006356</jstor_id><sourcerecordid>42006356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-a8f016780155b8e6982fc7bc6394681a5de37987415e0f3ea574fe606a9176383</originalsourceid><addsrcrecordid>eNpdkUtPGzEUha2qVQmPdVetRuoGIQ3c67c3SAjRplIkNrC2nMETJprYU3sGiX9fR4EU2Pgu_J1zH4eQbwjnCIpdDMHlc6QIaCSC-URm5cVacgOfyQyAqlpzyg_IYc5rADBCw1dyQBlFRoWeETV_HnzKg2_G5Poq-U0cfZV9yF1YVbGt2th3LlWhG1Nc-VA1MYw-jMfkS-v67E9e6hG5_3Vzdz2vF7e__1xfLepGAoy10y2gVBpQiKX20mjaNmrZSGa41OjEg2fKaMVReGiZd0Lx1kuQzqCSTLMjcrnzHablxj80pXWZ0w6p27j0bKPr7Puf0D3aVXyyTHCDDIvB2c7g8YNsfrWwXciTBSoYo1o8beHTl24p_p18Hu2my43vexd8nLJFDQxRcaYK-vMDuo5TCuUWFqkCIQG5KdTFjmpSzDn5dj8Cgt0maLcJ2v8JFsWPtwvv-dfI3gBb5d6u-DF7g1oU4PsOWOcxpj3BKYBkQrJ_2lKo8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1270560149</pqid></control><display><type>article</type><title>Hyperspectral remote sensing of foliar nitrogen content</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Knyazikhin, Yuri ; Schull, Mitchell A. ; Stenberg, Pauline ; Mõttus, Matti ; Rautiainen, Miina ; Yang, Yan ; Marshak, Alexander ; Carmona, Pedro Latorre ; Kaufmann, Robert K. ; Lewis, Philip ; Disney, Mathias I. ; Vanderbilt, Vern ; Davis, Anthony B. ; Baret, Frédéric ; Jacquemoud, Stéphane ; Lyapustin, Alexei ; Myneni, Ranga B.</creator><creatorcontrib>Knyazikhin, Yuri ; Schull, Mitchell A. ; Stenberg, Pauline ; Mõttus, Matti ; Rautiainen, Miina ; Yang, Yan ; Marshak, Alexander ; Carmona, Pedro Latorre ; Kaufmann, Robert K. ; Lewis, Philip ; Disney, Mathias I. ; Vanderbilt, Vern ; Davis, Anthony B. ; Baret, Frédéric ; Jacquemoud, Stéphane ; Lyapustin, Alexei ; Myneni, Ranga B.</creatorcontrib><description>A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact—it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423–855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710–790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1210196109</identifier><identifier>PMID: 23213258</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Astrophysics ; Biochemistry ; Biological Sciences ; boreal forests ; canopy ; Carbon Cycle ; Climate ; Correlation analysis ; Data Interpretation, Statistical ; Earth and Planetary Astrophysics ; Ecosystem ; Leaves ; Light ; monitoring ; Nitrogen ; Nitrogen - analysis ; nitrogen content ; Nitrogen Cycle ; Physical Sciences ; Plant Leaves - chemistry ; Plant Leaves - metabolism ; Plant Leaves - radiation effects ; PNAS Plus ; PNAS PLUS: AUTHOR SUMMARIES ; reflectance ; Remote sensing ; Remote Sensing Technology - methods ; Scattering, Radiation ; Sciences of the Universe ; Spectroscopy, Near-Infrared - methods ; Trees - chemistry ; Trees - metabolism ; Trees - radiation effects ; Vegetation mapping ; wavelengths</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-01, Vol.110 (3), p.811-812</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 15, 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-a8f016780155b8e6982fc7bc6394681a5de37987415e0f3ea574fe606a9176383</citedby><cites>FETCH-LOGICAL-c600t-a8f016780155b8e6982fc7bc6394681a5de37987415e0f3ea574fe606a9176383</cites><orcidid>0000-0002-1500-5256 ; 0000-0002-7655-8997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42006356$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42006356$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23213258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-02533285$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Knyazikhin, Yuri</creatorcontrib><creatorcontrib>Schull, Mitchell A.</creatorcontrib><creatorcontrib>Stenberg, Pauline</creatorcontrib><creatorcontrib>Mõttus, Matti</creatorcontrib><creatorcontrib>Rautiainen, Miina</creatorcontrib><creatorcontrib>Yang, Yan</creatorcontrib><creatorcontrib>Marshak, Alexander</creatorcontrib><creatorcontrib>Carmona, Pedro Latorre</creatorcontrib><creatorcontrib>Kaufmann, Robert K.</creatorcontrib><creatorcontrib>Lewis, Philip</creatorcontrib><creatorcontrib>Disney, Mathias I.</creatorcontrib><creatorcontrib>Vanderbilt, Vern</creatorcontrib><creatorcontrib>Davis, Anthony B.</creatorcontrib><creatorcontrib>Baret, Frédéric</creatorcontrib><creatorcontrib>Jacquemoud, Stéphane</creatorcontrib><creatorcontrib>Lyapustin, Alexei</creatorcontrib><creatorcontrib>Myneni, Ranga B.</creatorcontrib><title>Hyperspectral remote sensing of foliar nitrogen content</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact—it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423–855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710–790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.</description><subject>Astrophysics</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>boreal forests</subject><subject>canopy</subject><subject>Carbon Cycle</subject><subject>Climate</subject><subject>Correlation analysis</subject><subject>Data Interpretation, Statistical</subject><subject>Earth and Planetary Astrophysics</subject><subject>Ecosystem</subject><subject>Leaves</subject><subject>Light</subject><subject>monitoring</subject><subject>Nitrogen</subject><subject>Nitrogen - analysis</subject><subject>nitrogen content</subject><subject>Nitrogen Cycle</subject><subject>Physical Sciences</subject><subject>Plant Leaves - chemistry</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - radiation effects</subject><subject>PNAS Plus</subject><subject>PNAS PLUS: AUTHOR SUMMARIES</subject><subject>reflectance</subject><subject>Remote sensing</subject><subject>Remote Sensing Technology - methods</subject><subject>Scattering, Radiation</subject><subject>Sciences of the Universe</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Trees - chemistry</subject><subject>Trees - metabolism</subject><subject>Trees - radiation effects</subject><subject>Vegetation mapping</subject><subject>wavelengths</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtPGzEUha2qVQmPdVetRuoGIQ3c67c3SAjRplIkNrC2nMETJprYU3sGiX9fR4EU2Pgu_J1zH4eQbwjnCIpdDMHlc6QIaCSC-URm5cVacgOfyQyAqlpzyg_IYc5rADBCw1dyQBlFRoWeETV_HnzKg2_G5Poq-U0cfZV9yF1YVbGt2th3LlWhG1Nc-VA1MYw-jMfkS-v67E9e6hG5_3Vzdz2vF7e__1xfLepGAoy10y2gVBpQiKX20mjaNmrZSGa41OjEg2fKaMVReGiZd0Lx1kuQzqCSTLMjcrnzHablxj80pXWZ0w6p27j0bKPr7Puf0D3aVXyyTHCDDIvB2c7g8YNsfrWwXciTBSoYo1o8beHTl24p_p18Hu2my43vexd8nLJFDQxRcaYK-vMDuo5TCuUWFqkCIQG5KdTFjmpSzDn5dj8Cgt0maLcJ2v8JFsWPtwvv-dfI3gBb5d6u-DF7g1oU4PsOWOcxpj3BKYBkQrJ_2lKo8w</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Knyazikhin, Yuri</creator><creator>Schull, Mitchell A.</creator><creator>Stenberg, Pauline</creator><creator>Mõttus, Matti</creator><creator>Rautiainen, Miina</creator><creator>Yang, Yan</creator><creator>Marshak, Alexander</creator><creator>Carmona, Pedro Latorre</creator><creator>Kaufmann, Robert K.</creator><creator>Lewis, Philip</creator><creator>Disney, Mathias I.</creator><creator>Vanderbilt, Vern</creator><creator>Davis, Anthony B.</creator><creator>Baret, Frédéric</creator><creator>Jacquemoud, Stéphane</creator><creator>Lyapustin, Alexei</creator><creator>Myneni, Ranga B.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1500-5256</orcidid><orcidid>https://orcid.org/0000-0002-7655-8997</orcidid></search><sort><creationdate>20130115</creationdate><title>Hyperspectral remote sensing of foliar nitrogen content</title><author>Knyazikhin, Yuri ; Schull, Mitchell A. ; Stenberg, Pauline ; Mõttus, Matti ; Rautiainen, Miina ; Yang, Yan ; Marshak, Alexander ; Carmona, Pedro Latorre ; Kaufmann, Robert K. ; Lewis, Philip ; Disney, Mathias I. ; Vanderbilt, Vern ; Davis, Anthony B. ; Baret, Frédéric ; Jacquemoud, Stéphane ; Lyapustin, Alexei ; Myneni, Ranga B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-a8f016780155b8e6982fc7bc6394681a5de37987415e0f3ea574fe606a9176383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Astrophysics</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>boreal forests</topic><topic>canopy</topic><topic>Carbon Cycle</topic><topic>Climate</topic><topic>Correlation analysis</topic><topic>Data Interpretation, Statistical</topic><topic>Earth and Planetary Astrophysics</topic><topic>Ecosystem</topic><topic>Leaves</topic><topic>Light</topic><topic>monitoring</topic><topic>Nitrogen</topic><topic>Nitrogen - analysis</topic><topic>nitrogen content</topic><topic>Nitrogen Cycle</topic><topic>Physical Sciences</topic><topic>Plant Leaves - chemistry</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - radiation effects</topic><topic>PNAS Plus</topic><topic>PNAS PLUS: AUTHOR SUMMARIES</topic><topic>reflectance</topic><topic>Remote sensing</topic><topic>Remote Sensing Technology - methods</topic><topic>Scattering, Radiation</topic><topic>Sciences of the Universe</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Trees - chemistry</topic><topic>Trees - metabolism</topic><topic>Trees - radiation effects</topic><topic>Vegetation mapping</topic><topic>wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knyazikhin, Yuri</creatorcontrib><creatorcontrib>Schull, Mitchell A.</creatorcontrib><creatorcontrib>Stenberg, Pauline</creatorcontrib><creatorcontrib>Mõttus, Matti</creatorcontrib><creatorcontrib>Rautiainen, Miina</creatorcontrib><creatorcontrib>Yang, Yan</creatorcontrib><creatorcontrib>Marshak, Alexander</creatorcontrib><creatorcontrib>Carmona, Pedro Latorre</creatorcontrib><creatorcontrib>Kaufmann, Robert K.</creatorcontrib><creatorcontrib>Lewis, Philip</creatorcontrib><creatorcontrib>Disney, Mathias I.</creatorcontrib><creatorcontrib>Vanderbilt, Vern</creatorcontrib><creatorcontrib>Davis, Anthony B.</creatorcontrib><creatorcontrib>Baret, Frédéric</creatorcontrib><creatorcontrib>Jacquemoud, Stéphane</creatorcontrib><creatorcontrib>Lyapustin, Alexei</creatorcontrib><creatorcontrib>Myneni, Ranga B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knyazikhin, Yuri</au><au>Schull, Mitchell A.</au><au>Stenberg, Pauline</au><au>Mõttus, Matti</au><au>Rautiainen, Miina</au><au>Yang, Yan</au><au>Marshak, Alexander</au><au>Carmona, Pedro Latorre</au><au>Kaufmann, Robert K.</au><au>Lewis, Philip</au><au>Disney, Mathias I.</au><au>Vanderbilt, Vern</au><au>Davis, Anthony B.</au><au>Baret, Frédéric</au><au>Jacquemoud, Stéphane</au><au>Lyapustin, Alexei</au><au>Myneni, Ranga B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral remote sensing of foliar nitrogen content</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-01-15</date><risdate>2013</risdate><volume>110</volume><issue>3</issue><spage>811</spage><epage>812</epage><pages>811-812</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact—it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423–855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710–790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23213258</pmid><doi>10.1073/pnas.1210196109</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-1500-5256</orcidid><orcidid>https://orcid.org/0000-0002-7655-8997</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-01, Vol.110 (3), p.811-812
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1210196109
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Astrophysics
Biochemistry
Biological Sciences
boreal forests
canopy
Carbon Cycle
Climate
Correlation analysis
Data Interpretation, Statistical
Earth and Planetary Astrophysics
Ecosystem
Leaves
Light
monitoring
Nitrogen
Nitrogen - analysis
nitrogen content
Nitrogen Cycle
Physical Sciences
Plant Leaves - chemistry
Plant Leaves - metabolism
Plant Leaves - radiation effects
PNAS Plus
PNAS PLUS: AUTHOR SUMMARIES
reflectance
Remote sensing
Remote Sensing Technology - methods
Scattering, Radiation
Sciences of the Universe
Spectroscopy, Near-Infrared - methods
Trees - chemistry
Trees - metabolism
Trees - radiation effects
Vegetation mapping
wavelengths
title Hyperspectral remote sensing of foliar nitrogen content
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20remote%20sensing%20of%20foliar%20nitrogen%20content&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Knyazikhin,%20Yuri&rft.date=2013-01-15&rft.volume=110&rft.issue=3&rft.spage=811&rft.epage=812&rft.pages=811-812&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1210196109&rft_dat=%3Cjstor_cross%3E42006356%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1270560149&rft_id=info:pmid/23213258&rft_jstor_id=42006356&rfr_iscdi=true