Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas
Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments....
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-05, Vol.109 (21), p.8011-8015 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8015 |
---|---|
container_issue | 21 |
container_start_page | 8011 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Mondal, Sudipta Narayanan, V Ding, Wen Jun Lad, Amit D Hao, Biao Ahmad, Saima Wang, Wei Min Sheng, Zheng Ming Sengupta, Sudip Kaw, Predhiman Das, Amita Kumar, G. Ravindra |
description | Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments. Fascinating and novel behavior of hot dense matter has so far been only indirectly inferred because of the enormous difficulties of making observations on such matter. Here, we present direct evidence of turbulence in giant magnetic fields created in an overdense, hot plasma by relativistic intensity (1018W/cm2) femtosecond laser pulses. We have obtained magneto-optic polarigrams at femtosecond time intervals, simultaneously with micrometer spatial resolution. The spatial profiles of the magnetic field show randomness and their k spectra exhibit a power law along with certain well defined peaks at scales shorter than skin depth. Detailed two-dimensional particle-in-cell simulations delineate the underlying interaction between forward currents of relativistic energy "hot" electrons created by the laser pulse and "cold" return currents of thermal electrons induced in the target. Our results are not only fundamentally interesting but should also arouse interest on the role of magnetic turbulence induced resistivity in the context of fast ignition of laser fusion, and the possibility of experimentally simulating such structures with respect to the sun and other stellar environments. |
doi_str_mv | 10.1073/pnas.1200753109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1200753109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41602932</jstor_id><sourcerecordid>41602932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-5edb2e3efda51bddd81af262f2b8b280c2ebdf57518f2d4df5f29e9ab29849613</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EokNhzQqwxKYL0l6_EntTCZXykCqxoF1bTmxPPUriYCeV-Pd4mGEG2ODFtS1_5-j6HoReEjgn0LCLaTT5nFCARjAC6hFalUqqmit4jFYAtKkkp_wEPct5AwBKSHiKTigVdVmwQrcfQnLdjGObXXowc4gjjh7PS2qX3o0zHsx6dHPosA-utxmHEd_H-R22bswO96bI8JSiXTpn8VTug8nP0RNv-uxe7PdTdPfx-vbqc3Xz9dOXq_c3VScUzJVwtqWOOW-NIK21VhLjaU09bWVLJXTUtdaLRhDpqeXl6KlyyrRUSa5qwk7R5c53WtrB2a70m0yvpxQGk37oaIL--2UM93odHzRjNeECisHZ3iDF74vLsx5C7lzfm9HFJWtS10woUSb4fxRI6bRWvCno23_QTVzSWCbxi1KyVFqoix3VpZhzcv7QNwG9DVdvw9XHcIvi9Z_fPfC_0yzAmz2wVR7tlKZESyDbib3aEZs8x3RAOKmBKkaPDt5EbdYpZH33jQLhAKSRChj7CdD8vkk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1015981012</pqid></control><display><type>article</type><title>Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mondal, Sudipta ; Narayanan, V ; Ding, Wen Jun ; Lad, Amit D ; Hao, Biao ; Ahmad, Saima ; Wang, Wei Min ; Sheng, Zheng Ming ; Sengupta, Sudip ; Kaw, Predhiman ; Das, Amita ; Kumar, G. Ravindra</creator><creatorcontrib>Mondal, Sudipta ; Narayanan, V ; Ding, Wen Jun ; Lad, Amit D ; Hao, Biao ; Ahmad, Saima ; Wang, Wei Min ; Sheng, Zheng Ming ; Sengupta, Sudip ; Kaw, Predhiman ; Das, Amita ; Kumar, G. Ravindra</creatorcontrib><description>Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments. Fascinating and novel behavior of hot dense matter has so far been only indirectly inferred because of the enormous difficulties of making observations on such matter. Here, we present direct evidence of turbulence in giant magnetic fields created in an overdense, hot plasma by relativistic intensity (1018W/cm2) femtosecond laser pulses. We have obtained magneto-optic polarigrams at femtosecond time intervals, simultaneously with micrometer spatial resolution. The spatial profiles of the magnetic field show randomness and their k spectra exhibit a power law along with certain well defined peaks at scales shorter than skin depth. Detailed two-dimensional particle-in-cell simulations delineate the underlying interaction between forward currents of relativistic energy "hot" electrons created by the laser pulse and "cold" return currents of thermal electrons induced in the target. Our results are not only fundamentally interesting but should also arouse interest on the role of magnetic turbulence induced resistivity in the context of fast ignition of laser fusion, and the possibility of experimentally simulating such structures with respect to the sun and other stellar environments.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1200753109</identifier><identifier>PMID: 22566660</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Astronomical Phenomena ; cold ; Computer Simulation ; Electric current ; Electrons ; Ellipticity ; energy ; High temperature ; Hot Temperature ; Lasers ; Magnetic Fields ; Magnetic spectroscopy ; Models, Theoretical ; Physical Sciences ; Plasma currents ; Plasma physics ; Plasma probes ; Pumps ; Solar System ; temperature ; Turbulence ; turbulent flow</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-05, Vol.109 (21), p.8011-8015</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 22, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-5edb2e3efda51bddd81af262f2b8b280c2ebdf57518f2d4df5f29e9ab29849613</citedby><cites>FETCH-LOGICAL-c590t-5edb2e3efda51bddd81af262f2b8b280c2ebdf57518f2d4df5f29e9ab29849613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41602932$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41602932$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22566660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mondal, Sudipta</creatorcontrib><creatorcontrib>Narayanan, V</creatorcontrib><creatorcontrib>Ding, Wen Jun</creatorcontrib><creatorcontrib>Lad, Amit D</creatorcontrib><creatorcontrib>Hao, Biao</creatorcontrib><creatorcontrib>Ahmad, Saima</creatorcontrib><creatorcontrib>Wang, Wei Min</creatorcontrib><creatorcontrib>Sheng, Zheng Ming</creatorcontrib><creatorcontrib>Sengupta, Sudip</creatorcontrib><creatorcontrib>Kaw, Predhiman</creatorcontrib><creatorcontrib>Das, Amita</creatorcontrib><creatorcontrib>Kumar, G. Ravindra</creatorcontrib><title>Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments. Fascinating and novel behavior of hot dense matter has so far been only indirectly inferred because of the enormous difficulties of making observations on such matter. Here, we present direct evidence of turbulence in giant magnetic fields created in an overdense, hot plasma by relativistic intensity (1018W/cm2) femtosecond laser pulses. We have obtained magneto-optic polarigrams at femtosecond time intervals, simultaneously with micrometer spatial resolution. The spatial profiles of the magnetic field show randomness and their k spectra exhibit a power law along with certain well defined peaks at scales shorter than skin depth. Detailed two-dimensional particle-in-cell simulations delineate the underlying interaction between forward currents of relativistic energy "hot" electrons created by the laser pulse and "cold" return currents of thermal electrons induced in the target. Our results are not only fundamentally interesting but should also arouse interest on the role of magnetic turbulence induced resistivity in the context of fast ignition of laser fusion, and the possibility of experimentally simulating such structures with respect to the sun and other stellar environments.</description><subject>Astronomical Phenomena</subject><subject>cold</subject><subject>Computer Simulation</subject><subject>Electric current</subject><subject>Electrons</subject><subject>Ellipticity</subject><subject>energy</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>Lasers</subject><subject>Magnetic Fields</subject><subject>Magnetic spectroscopy</subject><subject>Models, Theoretical</subject><subject>Physical Sciences</subject><subject>Plasma currents</subject><subject>Plasma physics</subject><subject>Plasma probes</subject><subject>Pumps</subject><subject>Solar System</subject><subject>temperature</subject><subject>Turbulence</subject><subject>turbulent flow</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EokNhzQqwxKYL0l6_EntTCZXykCqxoF1bTmxPPUriYCeV-Pd4mGEG2ODFtS1_5-j6HoReEjgn0LCLaTT5nFCARjAC6hFalUqqmit4jFYAtKkkp_wEPct5AwBKSHiKTigVdVmwQrcfQnLdjGObXXowc4gjjh7PS2qX3o0zHsx6dHPosA-utxmHEd_H-R22bswO96bI8JSiXTpn8VTug8nP0RNv-uxe7PdTdPfx-vbqc3Xz9dOXq_c3VScUzJVwtqWOOW-NIK21VhLjaU09bWVLJXTUtdaLRhDpqeXl6KlyyrRUSa5qwk7R5c53WtrB2a70m0yvpxQGk37oaIL--2UM93odHzRjNeECisHZ3iDF74vLsx5C7lzfm9HFJWtS10woUSb4fxRI6bRWvCno23_QTVzSWCbxi1KyVFqoix3VpZhzcv7QNwG9DVdvw9XHcIvi9Z_fPfC_0yzAmz2wVR7tlKZESyDbib3aEZs8x3RAOKmBKkaPDt5EbdYpZH33jQLhAKSRChj7CdD8vkk</recordid><startdate>20120522</startdate><enddate>20120522</enddate><creator>Mondal, Sudipta</creator><creator>Narayanan, V</creator><creator>Ding, Wen Jun</creator><creator>Lad, Amit D</creator><creator>Hao, Biao</creator><creator>Ahmad, Saima</creator><creator>Wang, Wei Min</creator><creator>Sheng, Zheng Ming</creator><creator>Sengupta, Sudip</creator><creator>Kaw, Predhiman</creator><creator>Das, Amita</creator><creator>Kumar, G. Ravindra</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120522</creationdate><title>Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas</title><author>Mondal, Sudipta ; Narayanan, V ; Ding, Wen Jun ; Lad, Amit D ; Hao, Biao ; Ahmad, Saima ; Wang, Wei Min ; Sheng, Zheng Ming ; Sengupta, Sudip ; Kaw, Predhiman ; Das, Amita ; Kumar, G. Ravindra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-5edb2e3efda51bddd81af262f2b8b280c2ebdf57518f2d4df5f29e9ab29849613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Astronomical Phenomena</topic><topic>cold</topic><topic>Computer Simulation</topic><topic>Electric current</topic><topic>Electrons</topic><topic>Ellipticity</topic><topic>energy</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>Lasers</topic><topic>Magnetic Fields</topic><topic>Magnetic spectroscopy</topic><topic>Models, Theoretical</topic><topic>Physical Sciences</topic><topic>Plasma currents</topic><topic>Plasma physics</topic><topic>Plasma probes</topic><topic>Pumps</topic><topic>Solar System</topic><topic>temperature</topic><topic>Turbulence</topic><topic>turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondal, Sudipta</creatorcontrib><creatorcontrib>Narayanan, V</creatorcontrib><creatorcontrib>Ding, Wen Jun</creatorcontrib><creatorcontrib>Lad, Amit D</creatorcontrib><creatorcontrib>Hao, Biao</creatorcontrib><creatorcontrib>Ahmad, Saima</creatorcontrib><creatorcontrib>Wang, Wei Min</creatorcontrib><creatorcontrib>Sheng, Zheng Ming</creatorcontrib><creatorcontrib>Sengupta, Sudip</creatorcontrib><creatorcontrib>Kaw, Predhiman</creatorcontrib><creatorcontrib>Das, Amita</creatorcontrib><creatorcontrib>Kumar, G. Ravindra</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mondal, Sudipta</au><au>Narayanan, V</au><au>Ding, Wen Jun</au><au>Lad, Amit D</au><au>Hao, Biao</au><au>Ahmad, Saima</au><au>Wang, Wei Min</au><au>Sheng, Zheng Ming</au><au>Sengupta, Sudip</au><au>Kaw, Predhiman</au><au>Das, Amita</au><au>Kumar, G. Ravindra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-05-22</date><risdate>2012</risdate><volume>109</volume><issue>21</issue><spage>8011</spage><epage>8015</epage><pages>8011-8015</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments. Fascinating and novel behavior of hot dense matter has so far been only indirectly inferred because of the enormous difficulties of making observations on such matter. Here, we present direct evidence of turbulence in giant magnetic fields created in an overdense, hot plasma by relativistic intensity (1018W/cm2) femtosecond laser pulses. We have obtained magneto-optic polarigrams at femtosecond time intervals, simultaneously with micrometer spatial resolution. The spatial profiles of the magnetic field show randomness and their k spectra exhibit a power law along with certain well defined peaks at scales shorter than skin depth. Detailed two-dimensional particle-in-cell simulations delineate the underlying interaction between forward currents of relativistic energy "hot" electrons created by the laser pulse and "cold" return currents of thermal electrons induced in the target. Our results are not only fundamentally interesting but should also arouse interest on the role of magnetic turbulence induced resistivity in the context of fast ignition of laser fusion, and the possibility of experimentally simulating such structures with respect to the sun and other stellar environments.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22566660</pmid><doi>10.1073/pnas.1200753109</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-05, Vol.109 (21), p.8011-8015 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1200753109 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Astronomical Phenomena cold Computer Simulation Electric current Electrons Ellipticity energy High temperature Hot Temperature Lasers Magnetic Fields Magnetic spectroscopy Models, Theoretical Physical Sciences Plasma currents Plasma physics Plasma probes Pumps Solar System temperature Turbulence turbulent flow |
title | Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20observation%20of%20turbulent%20magnetic%20fields%20in%20hot,%20dense%20laser%20produced%20plasmas&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mondal,%20Sudipta&rft.date=2012-05-22&rft.volume=109&rft.issue=21&rft.spage=8011&rft.epage=8015&rft.pages=8011-8015&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1200753109&rft_dat=%3Cjstor_cross%3E41602932%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1015981012&rft_id=info:pmid/22566660&rft_jstor_id=41602932&rfr_iscdi=true |