Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas

Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-05, Vol.109 (21), p.8011-8015
Hauptverfasser: Mondal, Sudipta, Narayanan, V, Ding, Wen Jun, Lad, Amit D, Hao, Biao, Ahmad, Saima, Wang, Wei Min, Sheng, Zheng Ming, Sengupta, Sudip, Kaw, Predhiman, Das, Amita, Kumar, G. Ravindra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8015
container_issue 21
container_start_page 8011
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Mondal, Sudipta
Narayanan, V
Ding, Wen Jun
Lad, Amit D
Hao, Biao
Ahmad, Saima
Wang, Wei Min
Sheng, Zheng Ming
Sengupta, Sudip
Kaw, Predhiman
Das, Amita
Kumar, G. Ravindra
description Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments. Fascinating and novel behavior of hot dense matter has so far been only indirectly inferred because of the enormous difficulties of making observations on such matter. Here, we present direct evidence of turbulence in giant magnetic fields created in an overdense, hot plasma by relativistic intensity (1018W/cm2) femtosecond laser pulses. We have obtained magneto-optic polarigrams at femtosecond time intervals, simultaneously with micrometer spatial resolution. The spatial profiles of the magnetic field show randomness and their k spectra exhibit a power law along with certain well defined peaks at scales shorter than skin depth. Detailed two-dimensional particle-in-cell simulations delineate the underlying interaction between forward currents of relativistic energy "hot" electrons created by the laser pulse and "cold" return currents of thermal electrons induced in the target. Our results are not only fundamentally interesting but should also arouse interest on the role of magnetic turbulence induced resistivity in the context of fast ignition of laser fusion, and the possibility of experimentally simulating such structures with respect to the sun and other stellar environments.
doi_str_mv 10.1073/pnas.1200753109
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1200753109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41602932</jstor_id><sourcerecordid>41602932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-5edb2e3efda51bddd81af262f2b8b280c2ebdf57518f2d4df5f29e9ab29849613</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EokNhzQqwxKYL0l6_EntTCZXykCqxoF1bTmxPPUriYCeV-Pd4mGEG2ODFtS1_5-j6HoReEjgn0LCLaTT5nFCARjAC6hFalUqqmit4jFYAtKkkp_wEPct5AwBKSHiKTigVdVmwQrcfQnLdjGObXXowc4gjjh7PS2qX3o0zHsx6dHPosA-utxmHEd_H-R22bswO96bI8JSiXTpn8VTug8nP0RNv-uxe7PdTdPfx-vbqc3Xz9dOXq_c3VScUzJVwtqWOOW-NIK21VhLjaU09bWVLJXTUtdaLRhDpqeXl6KlyyrRUSa5qwk7R5c53WtrB2a70m0yvpxQGk37oaIL--2UM93odHzRjNeECisHZ3iDF74vLsx5C7lzfm9HFJWtS10woUSb4fxRI6bRWvCno23_QTVzSWCbxi1KyVFqoix3VpZhzcv7QNwG9DVdvw9XHcIvi9Z_fPfC_0yzAmz2wVR7tlKZESyDbib3aEZs8x3RAOKmBKkaPDt5EbdYpZH33jQLhAKSRChj7CdD8vkk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1015981012</pqid></control><display><type>article</type><title>Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mondal, Sudipta ; Narayanan, V ; Ding, Wen Jun ; Lad, Amit D ; Hao, Biao ; Ahmad, Saima ; Wang, Wei Min ; Sheng, Zheng Ming ; Sengupta, Sudip ; Kaw, Predhiman ; Das, Amita ; Kumar, G. Ravindra</creator><creatorcontrib>Mondal, Sudipta ; Narayanan, V ; Ding, Wen Jun ; Lad, Amit D ; Hao, Biao ; Ahmad, Saima ; Wang, Wei Min ; Sheng, Zheng Ming ; Sengupta, Sudip ; Kaw, Predhiman ; Das, Amita ; Kumar, G. Ravindra</creatorcontrib><description>Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments. Fascinating and novel behavior of hot dense matter has so far been only indirectly inferred because of the enormous difficulties of making observations on such matter. Here, we present direct evidence of turbulence in giant magnetic fields created in an overdense, hot plasma by relativistic intensity (1018W/cm2) femtosecond laser pulses. We have obtained magneto-optic polarigrams at femtosecond time intervals, simultaneously with micrometer spatial resolution. The spatial profiles of the magnetic field show randomness and their k spectra exhibit a power law along with certain well defined peaks at scales shorter than skin depth. Detailed two-dimensional particle-in-cell simulations delineate the underlying interaction between forward currents of relativistic energy "hot" electrons created by the laser pulse and "cold" return currents of thermal electrons induced in the target. Our results are not only fundamentally interesting but should also arouse interest on the role of magnetic turbulence induced resistivity in the context of fast ignition of laser fusion, and the possibility of experimentally simulating such structures with respect to the sun and other stellar environments.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1200753109</identifier><identifier>PMID: 22566660</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Astronomical Phenomena ; cold ; Computer Simulation ; Electric current ; Electrons ; Ellipticity ; energy ; High temperature ; Hot Temperature ; Lasers ; Magnetic Fields ; Magnetic spectroscopy ; Models, Theoretical ; Physical Sciences ; Plasma currents ; Plasma physics ; Plasma probes ; Pumps ; Solar System ; temperature ; Turbulence ; turbulent flow</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-05, Vol.109 (21), p.8011-8015</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 22, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-5edb2e3efda51bddd81af262f2b8b280c2ebdf57518f2d4df5f29e9ab29849613</citedby><cites>FETCH-LOGICAL-c590t-5edb2e3efda51bddd81af262f2b8b280c2ebdf57518f2d4df5f29e9ab29849613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41602932$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41602932$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22566660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mondal, Sudipta</creatorcontrib><creatorcontrib>Narayanan, V</creatorcontrib><creatorcontrib>Ding, Wen Jun</creatorcontrib><creatorcontrib>Lad, Amit D</creatorcontrib><creatorcontrib>Hao, Biao</creatorcontrib><creatorcontrib>Ahmad, Saima</creatorcontrib><creatorcontrib>Wang, Wei Min</creatorcontrib><creatorcontrib>Sheng, Zheng Ming</creatorcontrib><creatorcontrib>Sengupta, Sudip</creatorcontrib><creatorcontrib>Kaw, Predhiman</creatorcontrib><creatorcontrib>Das, Amita</creatorcontrib><creatorcontrib>Kumar, G. Ravindra</creatorcontrib><title>Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments. Fascinating and novel behavior of hot dense matter has so far been only indirectly inferred because of the enormous difficulties of making observations on such matter. Here, we present direct evidence of turbulence in giant magnetic fields created in an overdense, hot plasma by relativistic intensity (1018W/cm2) femtosecond laser pulses. We have obtained magneto-optic polarigrams at femtosecond time intervals, simultaneously with micrometer spatial resolution. The spatial profiles of the magnetic field show randomness and their k spectra exhibit a power law along with certain well defined peaks at scales shorter than skin depth. Detailed two-dimensional particle-in-cell simulations delineate the underlying interaction between forward currents of relativistic energy "hot" electrons created by the laser pulse and "cold" return currents of thermal electrons induced in the target. Our results are not only fundamentally interesting but should also arouse interest on the role of magnetic turbulence induced resistivity in the context of fast ignition of laser fusion, and the possibility of experimentally simulating such structures with respect to the sun and other stellar environments.</description><subject>Astronomical Phenomena</subject><subject>cold</subject><subject>Computer Simulation</subject><subject>Electric current</subject><subject>Electrons</subject><subject>Ellipticity</subject><subject>energy</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>Lasers</subject><subject>Magnetic Fields</subject><subject>Magnetic spectroscopy</subject><subject>Models, Theoretical</subject><subject>Physical Sciences</subject><subject>Plasma currents</subject><subject>Plasma physics</subject><subject>Plasma probes</subject><subject>Pumps</subject><subject>Solar System</subject><subject>temperature</subject><subject>Turbulence</subject><subject>turbulent flow</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EokNhzQqwxKYL0l6_EntTCZXykCqxoF1bTmxPPUriYCeV-Pd4mGEG2ODFtS1_5-j6HoReEjgn0LCLaTT5nFCARjAC6hFalUqqmit4jFYAtKkkp_wEPct5AwBKSHiKTigVdVmwQrcfQnLdjGObXXowc4gjjh7PS2qX3o0zHsx6dHPosA-utxmHEd_H-R22bswO96bI8JSiXTpn8VTug8nP0RNv-uxe7PdTdPfx-vbqc3Xz9dOXq_c3VScUzJVwtqWOOW-NIK21VhLjaU09bWVLJXTUtdaLRhDpqeXl6KlyyrRUSa5qwk7R5c53WtrB2a70m0yvpxQGk37oaIL--2UM93odHzRjNeECisHZ3iDF74vLsx5C7lzfm9HFJWtS10woUSb4fxRI6bRWvCno23_QTVzSWCbxi1KyVFqoix3VpZhzcv7QNwG9DVdvw9XHcIvi9Z_fPfC_0yzAmz2wVR7tlKZESyDbib3aEZs8x3RAOKmBKkaPDt5EbdYpZH33jQLhAKSRChj7CdD8vkk</recordid><startdate>20120522</startdate><enddate>20120522</enddate><creator>Mondal, Sudipta</creator><creator>Narayanan, V</creator><creator>Ding, Wen Jun</creator><creator>Lad, Amit D</creator><creator>Hao, Biao</creator><creator>Ahmad, Saima</creator><creator>Wang, Wei Min</creator><creator>Sheng, Zheng Ming</creator><creator>Sengupta, Sudip</creator><creator>Kaw, Predhiman</creator><creator>Das, Amita</creator><creator>Kumar, G. Ravindra</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120522</creationdate><title>Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas</title><author>Mondal, Sudipta ; Narayanan, V ; Ding, Wen Jun ; Lad, Amit D ; Hao, Biao ; Ahmad, Saima ; Wang, Wei Min ; Sheng, Zheng Ming ; Sengupta, Sudip ; Kaw, Predhiman ; Das, Amita ; Kumar, G. Ravindra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-5edb2e3efda51bddd81af262f2b8b280c2ebdf57518f2d4df5f29e9ab29849613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Astronomical Phenomena</topic><topic>cold</topic><topic>Computer Simulation</topic><topic>Electric current</topic><topic>Electrons</topic><topic>Ellipticity</topic><topic>energy</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>Lasers</topic><topic>Magnetic Fields</topic><topic>Magnetic spectroscopy</topic><topic>Models, Theoretical</topic><topic>Physical Sciences</topic><topic>Plasma currents</topic><topic>Plasma physics</topic><topic>Plasma probes</topic><topic>Pumps</topic><topic>Solar System</topic><topic>temperature</topic><topic>Turbulence</topic><topic>turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondal, Sudipta</creatorcontrib><creatorcontrib>Narayanan, V</creatorcontrib><creatorcontrib>Ding, Wen Jun</creatorcontrib><creatorcontrib>Lad, Amit D</creatorcontrib><creatorcontrib>Hao, Biao</creatorcontrib><creatorcontrib>Ahmad, Saima</creatorcontrib><creatorcontrib>Wang, Wei Min</creatorcontrib><creatorcontrib>Sheng, Zheng Ming</creatorcontrib><creatorcontrib>Sengupta, Sudip</creatorcontrib><creatorcontrib>Kaw, Predhiman</creatorcontrib><creatorcontrib>Das, Amita</creatorcontrib><creatorcontrib>Kumar, G. Ravindra</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mondal, Sudipta</au><au>Narayanan, V</au><au>Ding, Wen Jun</au><au>Lad, Amit D</au><au>Hao, Biao</au><au>Ahmad, Saima</au><au>Wang, Wei Min</au><au>Sheng, Zheng Ming</au><au>Sengupta, Sudip</au><au>Kaw, Predhiman</au><au>Das, Amita</au><au>Kumar, G. Ravindra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-05-22</date><risdate>2012</risdate><volume>109</volume><issue>21</issue><spage>8011</spage><epage>8015</epage><pages>8011-8015</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments. Fascinating and novel behavior of hot dense matter has so far been only indirectly inferred because of the enormous difficulties of making observations on such matter. Here, we present direct evidence of turbulence in giant magnetic fields created in an overdense, hot plasma by relativistic intensity (1018W/cm2) femtosecond laser pulses. We have obtained magneto-optic polarigrams at femtosecond time intervals, simultaneously with micrometer spatial resolution. The spatial profiles of the magnetic field show randomness and their k spectra exhibit a power law along with certain well defined peaks at scales shorter than skin depth. Detailed two-dimensional particle-in-cell simulations delineate the underlying interaction between forward currents of relativistic energy "hot" electrons created by the laser pulse and "cold" return currents of thermal electrons induced in the target. Our results are not only fundamentally interesting but should also arouse interest on the role of magnetic turbulence induced resistivity in the context of fast ignition of laser fusion, and the possibility of experimentally simulating such structures with respect to the sun and other stellar environments.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22566660</pmid><doi>10.1073/pnas.1200753109</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-05, Vol.109 (21), p.8011-8015
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1200753109
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Astronomical Phenomena
cold
Computer Simulation
Electric current
Electrons
Ellipticity
energy
High temperature
Hot Temperature
Lasers
Magnetic Fields
Magnetic spectroscopy
Models, Theoretical
Physical Sciences
Plasma currents
Plasma physics
Plasma probes
Pumps
Solar System
temperature
Turbulence
turbulent flow
title Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20observation%20of%20turbulent%20magnetic%20fields%20in%20hot,%20dense%20laser%20produced%20plasmas&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mondal,%20Sudipta&rft.date=2012-05-22&rft.volume=109&rft.issue=21&rft.spage=8011&rft.epage=8015&rft.pages=8011-8015&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1200753109&rft_dat=%3Cjstor_cross%3E41602932%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1015981012&rft_id=info:pmid/22566660&rft_jstor_id=41602932&rfr_iscdi=true