On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities

We apply a free energy perturbation simulation method, free energy perturbation/replica exchange with solute tempering, to two modifications of protein–ligand complexes that lead to significant conformational changes, the first in the protein and the second in the ligand. The approach is shown to fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-02, Vol.109 (6), p.1937-1942
Hauptverfasser: Wang, Lingle, Berne, B. J., Friesner, Richard A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1942
container_issue 6
container_start_page 1937
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Wang, Lingle
Berne, B. J.
Friesner, Richard A.
description We apply a free energy perturbation simulation method, free energy perturbation/replica exchange with solute tempering, to two modifications of protein–ligand complexes that lead to significant conformational changes, the first in the protein and the second in the ligand. The approach is shown to facilitate sampling in these challenging cases where high free energy barriers separate the initial and final conformations and leads to superior convergence of the free energy as demonstrated both by consistency of the results (independence from the starting conformation) and agreement with experimental binding affinity data. The second case, consisting of two neutral thrombin ligands that are taken from a recent medicinal chemistry program for this interesting pharmaceutical target, is of particular significance in that it demonstrates that good results can be obtained for large, complex ligands, as opposed to relatively simple model systems. To achieve quantitative agreement with experiment in the thrombin case, a next generation force field, Optimized Potentials for Liquid Simulations 2.0, is required, which provides superior charges and torsional parameters as compared to earlier alternatives.
doi_str_mv 10.1073/pnas.1114017109
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1114017109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41477051</jstor_id><sourcerecordid>41477051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-d661f9efde23afff85d2fe8b33b763abb57efacc753d47c8a3a8de559932c5ed3</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EokNhzQoUsYFNWl9iO95UQhU3qVI3sLYc53jiUcYe7GSk2fEOvCFPgqMp08KCjS_ydz4dnx-hlwRfECzZ5S6YfEEIaTCRBKtHaFVWUotG4cdohTGVddvQ5gw9y3mDMVa8xU_RGaUMt0zwFdrehsrYwcPeh3U1-PVQrnZOxh4qE_oqwehN50c_HSofqmmAyprRzqOZfAxVdAtRznuodilO4MOvHz9Hv15qOx_6xWqc88FPHvJz9MSZMcOLu_0cffv44ev15_rm9tOX6_c3teWCTXUvBHEKXA-UlWLX8p46aDvGOimY6TouwZU2JWd9I21rmGl74FwpRi2Hnp2jq6N3N3db6C2EKZlR75LfmnTQ0Xj990vwg17HvWZUSt6SInh7J0jx-wx50lufLYyjCRDnrBUtM2cKi0K--y9JVcsFbRRbpG_-QTdxTqEMYvFh3HDMCnR5hGyKOSdwp64J1kvmeslc32deKl4__OyJ_xPyA2CpvNcpLTRRTBbg1RHY5CmmE9GQRkrMCfsNnRW_nA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921004503</pqid></control><display><type>article</type><title>On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Lingle ; Berne, B. J. ; Friesner, Richard A.</creator><creatorcontrib>Wang, Lingle ; Berne, B. J. ; Friesner, Richard A.</creatorcontrib><description>We apply a free energy perturbation simulation method, free energy perturbation/replica exchange with solute tempering, to two modifications of protein–ligand complexes that lead to significant conformational changes, the first in the protein and the second in the ligand. The approach is shown to facilitate sampling in these challenging cases where high free energy barriers separate the initial and final conformations and leads to superior convergence of the free energy as demonstrated both by consistency of the results (independence from the starting conformation) and agreement with experimental binding affinity data. The second case, consisting of two neutral thrombin ligands that are taken from a recent medicinal chemistry program for this interesting pharmaceutical target, is of particular significance in that it demonstrates that good results can be obtained for large, complex ligands, as opposed to relatively simple model systems. To achieve quantitative agreement with experiment in the thrombin case, a next generation force field, Optimized Potentials for Liquid Simulations 2.0, is required, which provides superior charges and torsional parameters as compared to earlier alternatives.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1114017109</identifier><identifier>PMID: 22308365</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Accuracy ; Acetamides - metabolism ; Atoms ; Bacteriophage T4 - enzymology ; Benzene - metabolism ; binding capacity ; Binding Sites ; Biological Sciences ; Computer Simulation ; Crystal structure ; Crystallography, X-Ray ; Degrees of freedom ; Dihedral angle ; energy ; Force field ; Free energy ; Lead ; Ligands ; Models, Molecular ; Muramidase - chemistry ; Muramidase - metabolism ; Mutant Proteins - metabolism ; Physical Sciences ; Protein Binding ; Protein Conformation ; Proteins ; Proteins - metabolism ; Pyridines ; Simulation ; simulation models ; solutes ; Solvents ; tempering ; Thermodynamics ; Thrombin - chemistry ; Thrombin - metabolism ; Valine - metabolism ; Xylenes - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-02, Vol.109 (6), p.1937-1942</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 7, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-d661f9efde23afff85d2fe8b33b763abb57efacc753d47c8a3a8de559932c5ed3</citedby><cites>FETCH-LOGICAL-c563t-d661f9efde23afff85d2fe8b33b763abb57efacc753d47c8a3a8de559932c5ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41477051$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41477051$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22308365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Lingle</creatorcontrib><creatorcontrib>Berne, B. J.</creatorcontrib><creatorcontrib>Friesner, Richard A.</creatorcontrib><title>On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We apply a free energy perturbation simulation method, free energy perturbation/replica exchange with solute tempering, to two modifications of protein–ligand complexes that lead to significant conformational changes, the first in the protein and the second in the ligand. The approach is shown to facilitate sampling in these challenging cases where high free energy barriers separate the initial and final conformations and leads to superior convergence of the free energy as demonstrated both by consistency of the results (independence from the starting conformation) and agreement with experimental binding affinity data. The second case, consisting of two neutral thrombin ligands that are taken from a recent medicinal chemistry program for this interesting pharmaceutical target, is of particular significance in that it demonstrates that good results can be obtained for large, complex ligands, as opposed to relatively simple model systems. To achieve quantitative agreement with experiment in the thrombin case, a next generation force field, Optimized Potentials for Liquid Simulations 2.0, is required, which provides superior charges and torsional parameters as compared to earlier alternatives.</description><subject>Accuracy</subject><subject>Acetamides - metabolism</subject><subject>Atoms</subject><subject>Bacteriophage T4 - enzymology</subject><subject>Benzene - metabolism</subject><subject>binding capacity</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Computer Simulation</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Degrees of freedom</subject><subject>Dihedral angle</subject><subject>energy</subject><subject>Force field</subject><subject>Free energy</subject><subject>Lead</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Muramidase - chemistry</subject><subject>Muramidase - metabolism</subject><subject>Mutant Proteins - metabolism</subject><subject>Physical Sciences</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Pyridines</subject><subject>Simulation</subject><subject>simulation models</subject><subject>solutes</subject><subject>Solvents</subject><subject>tempering</subject><subject>Thermodynamics</subject><subject>Thrombin - chemistry</subject><subject>Thrombin - metabolism</subject><subject>Valine - metabolism</subject><subject>Xylenes - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctu1DAUhi0EokNhzQoUsYFNWl9iO95UQhU3qVI3sLYc53jiUcYe7GSk2fEOvCFPgqMp08KCjS_ydz4dnx-hlwRfECzZ5S6YfEEIaTCRBKtHaFVWUotG4cdohTGVddvQ5gw9y3mDMVa8xU_RGaUMt0zwFdrehsrYwcPeh3U1-PVQrnZOxh4qE_oqwehN50c_HSofqmmAyprRzqOZfAxVdAtRznuodilO4MOvHz9Hv15qOx_6xWqc88FPHvJz9MSZMcOLu_0cffv44ev15_rm9tOX6_c3teWCTXUvBHEKXA-UlWLX8p46aDvGOimY6TouwZU2JWd9I21rmGl74FwpRi2Hnp2jq6N3N3db6C2EKZlR75LfmnTQ0Xj990vwg17HvWZUSt6SInh7J0jx-wx50lufLYyjCRDnrBUtM2cKi0K--y9JVcsFbRRbpG_-QTdxTqEMYvFh3HDMCnR5hGyKOSdwp64J1kvmeslc32deKl4__OyJ_xPyA2CpvNcpLTRRTBbg1RHY5CmmE9GQRkrMCfsNnRW_nA</recordid><startdate>20120207</startdate><enddate>20120207</enddate><creator>Wang, Lingle</creator><creator>Berne, B. J.</creator><creator>Friesner, Richard A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120207</creationdate><title>On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities</title><author>Wang, Lingle ; Berne, B. J. ; Friesner, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-d661f9efde23afff85d2fe8b33b763abb57efacc753d47c8a3a8de559932c5ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Acetamides - metabolism</topic><topic>Atoms</topic><topic>Bacteriophage T4 - enzymology</topic><topic>Benzene - metabolism</topic><topic>binding capacity</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Computer Simulation</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Degrees of freedom</topic><topic>Dihedral angle</topic><topic>energy</topic><topic>Force field</topic><topic>Free energy</topic><topic>Lead</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Muramidase - chemistry</topic><topic>Muramidase - metabolism</topic><topic>Mutant Proteins - metabolism</topic><topic>Physical Sciences</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Pyridines</topic><topic>Simulation</topic><topic>simulation models</topic><topic>solutes</topic><topic>Solvents</topic><topic>tempering</topic><topic>Thermodynamics</topic><topic>Thrombin - chemistry</topic><topic>Thrombin - metabolism</topic><topic>Valine - metabolism</topic><topic>Xylenes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lingle</creatorcontrib><creatorcontrib>Berne, B. J.</creatorcontrib><creatorcontrib>Friesner, Richard A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lingle</au><au>Berne, B. J.</au><au>Friesner, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-02-07</date><risdate>2012</risdate><volume>109</volume><issue>6</issue><spage>1937</spage><epage>1942</epage><pages>1937-1942</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We apply a free energy perturbation simulation method, free energy perturbation/replica exchange with solute tempering, to two modifications of protein–ligand complexes that lead to significant conformational changes, the first in the protein and the second in the ligand. The approach is shown to facilitate sampling in these challenging cases where high free energy barriers separate the initial and final conformations and leads to superior convergence of the free energy as demonstrated both by consistency of the results (independence from the starting conformation) and agreement with experimental binding affinity data. The second case, consisting of two neutral thrombin ligands that are taken from a recent medicinal chemistry program for this interesting pharmaceutical target, is of particular significance in that it demonstrates that good results can be obtained for large, complex ligands, as opposed to relatively simple model systems. To achieve quantitative agreement with experiment in the thrombin case, a next generation force field, Optimized Potentials for Liquid Simulations 2.0, is required, which provides superior charges and torsional parameters as compared to earlier alternatives.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22308365</pmid><doi>10.1073/pnas.1114017109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-02, Vol.109 (6), p.1937-1942
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1114017109
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Accuracy
Acetamides - metabolism
Atoms
Bacteriophage T4 - enzymology
Benzene - metabolism
binding capacity
Binding Sites
Biological Sciences
Computer Simulation
Crystal structure
Crystallography, X-Ray
Degrees of freedom
Dihedral angle
energy
Force field
Free energy
Lead
Ligands
Models, Molecular
Muramidase - chemistry
Muramidase - metabolism
Mutant Proteins - metabolism
Physical Sciences
Protein Binding
Protein Conformation
Proteins
Proteins - metabolism
Pyridines
Simulation
simulation models
solutes
Solvents
tempering
Thermodynamics
Thrombin - chemistry
Thrombin - metabolism
Valine - metabolism
Xylenes - metabolism
title On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20achieving%20high%20accuracy%20and%20reliability%20in%20the%20calculation%20of%20relative%20protein%E2%80%93ligand%20binding%20affinities&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Lingle&rft.date=2012-02-07&rft.volume=109&rft.issue=6&rft.spage=1937&rft.epage=1942&rft.pages=1937-1942&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1114017109&rft_dat=%3Cjstor_cross%3E41477051%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921004503&rft_id=info:pmid/22308365&rft_jstor_id=41477051&rfr_iscdi=true