On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities
We apply a free energy perturbation simulation method, free energy perturbation/replica exchange with solute tempering, to two modifications of protein–ligand complexes that lead to significant conformational changes, the first in the protein and the second in the ligand. The approach is shown to fa...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-02, Vol.109 (6), p.1937-1942 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1942 |
---|---|
container_issue | 6 |
container_start_page | 1937 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Wang, Lingle Berne, B. J. Friesner, Richard A. |
description | We apply a free energy perturbation simulation method, free energy perturbation/replica exchange with solute tempering, to two modifications of protein–ligand complexes that lead to significant conformational changes, the first in the protein and the second in the ligand. The approach is shown to facilitate sampling in these challenging cases where high free energy barriers separate the initial and final conformations and leads to superior convergence of the free energy as demonstrated both by consistency of the results (independence from the starting conformation) and agreement with experimental binding affinity data. The second case, consisting of two neutral thrombin ligands that are taken from a recent medicinal chemistry program for this interesting pharmaceutical target, is of particular significance in that it demonstrates that good results can be obtained for large, complex ligands, as opposed to relatively simple model systems. To achieve quantitative agreement with experiment in the thrombin case, a next generation force field, Optimized Potentials for Liquid Simulations 2.0, is required, which provides superior charges and torsional parameters as compared to earlier alternatives. |
doi_str_mv | 10.1073/pnas.1114017109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1114017109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41477051</jstor_id><sourcerecordid>41477051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-d661f9efde23afff85d2fe8b33b763abb57efacc753d47c8a3a8de559932c5ed3</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EokNhzQoUsYFNWl9iO95UQhU3qVI3sLYc53jiUcYe7GSk2fEOvCFPgqMp08KCjS_ydz4dnx-hlwRfECzZ5S6YfEEIaTCRBKtHaFVWUotG4cdohTGVddvQ5gw9y3mDMVa8xU_RGaUMt0zwFdrehsrYwcPeh3U1-PVQrnZOxh4qE_oqwehN50c_HSofqmmAyprRzqOZfAxVdAtRznuodilO4MOvHz9Hv15qOx_6xWqc88FPHvJz9MSZMcOLu_0cffv44ev15_rm9tOX6_c3teWCTXUvBHEKXA-UlWLX8p46aDvGOimY6TouwZU2JWd9I21rmGl74FwpRi2Hnp2jq6N3N3db6C2EKZlR75LfmnTQ0Xj990vwg17HvWZUSt6SInh7J0jx-wx50lufLYyjCRDnrBUtM2cKi0K--y9JVcsFbRRbpG_-QTdxTqEMYvFh3HDMCnR5hGyKOSdwp64J1kvmeslc32deKl4__OyJ_xPyA2CpvNcpLTRRTBbg1RHY5CmmE9GQRkrMCfsNnRW_nA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921004503</pqid></control><display><type>article</type><title>On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Lingle ; Berne, B. J. ; Friesner, Richard A.</creator><creatorcontrib>Wang, Lingle ; Berne, B. J. ; Friesner, Richard A.</creatorcontrib><description>We apply a free energy perturbation simulation method, free energy perturbation/replica exchange with solute tempering, to two modifications of protein–ligand complexes that lead to significant conformational changes, the first in the protein and the second in the ligand. The approach is shown to facilitate sampling in these challenging cases where high free energy barriers separate the initial and final conformations and leads to superior convergence of the free energy as demonstrated both by consistency of the results (independence from the starting conformation) and agreement with experimental binding affinity data. The second case, consisting of two neutral thrombin ligands that are taken from a recent medicinal chemistry program for this interesting pharmaceutical target, is of particular significance in that it demonstrates that good results can be obtained for large, complex ligands, as opposed to relatively simple model systems. To achieve quantitative agreement with experiment in the thrombin case, a next generation force field, Optimized Potentials for Liquid Simulations 2.0, is required, which provides superior charges and torsional parameters as compared to earlier alternatives.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1114017109</identifier><identifier>PMID: 22308365</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Accuracy ; Acetamides - metabolism ; Atoms ; Bacteriophage T4 - enzymology ; Benzene - metabolism ; binding capacity ; Binding Sites ; Biological Sciences ; Computer Simulation ; Crystal structure ; Crystallography, X-Ray ; Degrees of freedom ; Dihedral angle ; energy ; Force field ; Free energy ; Lead ; Ligands ; Models, Molecular ; Muramidase - chemistry ; Muramidase - metabolism ; Mutant Proteins - metabolism ; Physical Sciences ; Protein Binding ; Protein Conformation ; Proteins ; Proteins - metabolism ; Pyridines ; Simulation ; simulation models ; solutes ; Solvents ; tempering ; Thermodynamics ; Thrombin - chemistry ; Thrombin - metabolism ; Valine - metabolism ; Xylenes - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-02, Vol.109 (6), p.1937-1942</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 7, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-d661f9efde23afff85d2fe8b33b763abb57efacc753d47c8a3a8de559932c5ed3</citedby><cites>FETCH-LOGICAL-c563t-d661f9efde23afff85d2fe8b33b763abb57efacc753d47c8a3a8de559932c5ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41477051$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41477051$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22308365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Lingle</creatorcontrib><creatorcontrib>Berne, B. J.</creatorcontrib><creatorcontrib>Friesner, Richard A.</creatorcontrib><title>On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We apply a free energy perturbation simulation method, free energy perturbation/replica exchange with solute tempering, to two modifications of protein–ligand complexes that lead to significant conformational changes, the first in the protein and the second in the ligand. The approach is shown to facilitate sampling in these challenging cases where high free energy barriers separate the initial and final conformations and leads to superior convergence of the free energy as demonstrated both by consistency of the results (independence from the starting conformation) and agreement with experimental binding affinity data. The second case, consisting of two neutral thrombin ligands that are taken from a recent medicinal chemistry program for this interesting pharmaceutical target, is of particular significance in that it demonstrates that good results can be obtained for large, complex ligands, as opposed to relatively simple model systems. To achieve quantitative agreement with experiment in the thrombin case, a next generation force field, Optimized Potentials for Liquid Simulations 2.0, is required, which provides superior charges and torsional parameters as compared to earlier alternatives.</description><subject>Accuracy</subject><subject>Acetamides - metabolism</subject><subject>Atoms</subject><subject>Bacteriophage T4 - enzymology</subject><subject>Benzene - metabolism</subject><subject>binding capacity</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Computer Simulation</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Degrees of freedom</subject><subject>Dihedral angle</subject><subject>energy</subject><subject>Force field</subject><subject>Free energy</subject><subject>Lead</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Muramidase - chemistry</subject><subject>Muramidase - metabolism</subject><subject>Mutant Proteins - metabolism</subject><subject>Physical Sciences</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Pyridines</subject><subject>Simulation</subject><subject>simulation models</subject><subject>solutes</subject><subject>Solvents</subject><subject>tempering</subject><subject>Thermodynamics</subject><subject>Thrombin - chemistry</subject><subject>Thrombin - metabolism</subject><subject>Valine - metabolism</subject><subject>Xylenes - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctu1DAUhi0EokNhzQoUsYFNWl9iO95UQhU3qVI3sLYc53jiUcYe7GSk2fEOvCFPgqMp08KCjS_ydz4dnx-hlwRfECzZ5S6YfEEIaTCRBKtHaFVWUotG4cdohTGVddvQ5gw9y3mDMVa8xU_RGaUMt0zwFdrehsrYwcPeh3U1-PVQrnZOxh4qE_oqwehN50c_HSofqmmAyprRzqOZfAxVdAtRznuodilO4MOvHz9Hv15qOx_6xWqc88FPHvJz9MSZMcOLu_0cffv44ev15_rm9tOX6_c3teWCTXUvBHEKXA-UlWLX8p46aDvGOimY6TouwZU2JWd9I21rmGl74FwpRi2Hnp2jq6N3N3db6C2EKZlR75LfmnTQ0Xj990vwg17HvWZUSt6SInh7J0jx-wx50lufLYyjCRDnrBUtM2cKi0K--y9JVcsFbRRbpG_-QTdxTqEMYvFh3HDMCnR5hGyKOSdwp64J1kvmeslc32deKl4__OyJ_xPyA2CpvNcpLTRRTBbg1RHY5CmmE9GQRkrMCfsNnRW_nA</recordid><startdate>20120207</startdate><enddate>20120207</enddate><creator>Wang, Lingle</creator><creator>Berne, B. J.</creator><creator>Friesner, Richard A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120207</creationdate><title>On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities</title><author>Wang, Lingle ; Berne, B. J. ; Friesner, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-d661f9efde23afff85d2fe8b33b763abb57efacc753d47c8a3a8de559932c5ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Acetamides - metabolism</topic><topic>Atoms</topic><topic>Bacteriophage T4 - enzymology</topic><topic>Benzene - metabolism</topic><topic>binding capacity</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Computer Simulation</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Degrees of freedom</topic><topic>Dihedral angle</topic><topic>energy</topic><topic>Force field</topic><topic>Free energy</topic><topic>Lead</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Muramidase - chemistry</topic><topic>Muramidase - metabolism</topic><topic>Mutant Proteins - metabolism</topic><topic>Physical Sciences</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Pyridines</topic><topic>Simulation</topic><topic>simulation models</topic><topic>solutes</topic><topic>Solvents</topic><topic>tempering</topic><topic>Thermodynamics</topic><topic>Thrombin - chemistry</topic><topic>Thrombin - metabolism</topic><topic>Valine - metabolism</topic><topic>Xylenes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lingle</creatorcontrib><creatorcontrib>Berne, B. J.</creatorcontrib><creatorcontrib>Friesner, Richard A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lingle</au><au>Berne, B. J.</au><au>Friesner, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-02-07</date><risdate>2012</risdate><volume>109</volume><issue>6</issue><spage>1937</spage><epage>1942</epage><pages>1937-1942</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We apply a free energy perturbation simulation method, free energy perturbation/replica exchange with solute tempering, to two modifications of protein–ligand complexes that lead to significant conformational changes, the first in the protein and the second in the ligand. The approach is shown to facilitate sampling in these challenging cases where high free energy barriers separate the initial and final conformations and leads to superior convergence of the free energy as demonstrated both by consistency of the results (independence from the starting conformation) and agreement with experimental binding affinity data. The second case, consisting of two neutral thrombin ligands that are taken from a recent medicinal chemistry program for this interesting pharmaceutical target, is of particular significance in that it demonstrates that good results can be obtained for large, complex ligands, as opposed to relatively simple model systems. To achieve quantitative agreement with experiment in the thrombin case, a next generation force field, Optimized Potentials for Liquid Simulations 2.0, is required, which provides superior charges and torsional parameters as compared to earlier alternatives.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22308365</pmid><doi>10.1073/pnas.1114017109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-02, Vol.109 (6), p.1937-1942 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1114017109 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Accuracy Acetamides - metabolism Atoms Bacteriophage T4 - enzymology Benzene - metabolism binding capacity Binding Sites Biological Sciences Computer Simulation Crystal structure Crystallography, X-Ray Degrees of freedom Dihedral angle energy Force field Free energy Lead Ligands Models, Molecular Muramidase - chemistry Muramidase - metabolism Mutant Proteins - metabolism Physical Sciences Protein Binding Protein Conformation Proteins Proteins - metabolism Pyridines Simulation simulation models solutes Solvents tempering Thermodynamics Thrombin - chemistry Thrombin - metabolism Valine - metabolism Xylenes - metabolism |
title | On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20achieving%20high%20accuracy%20and%20reliability%20in%20the%20calculation%20of%20relative%20protein%E2%80%93ligand%20binding%20affinities&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wang,%20Lingle&rft.date=2012-02-07&rft.volume=109&rft.issue=6&rft.spage=1937&rft.epage=1942&rft.pages=1937-1942&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1114017109&rft_dat=%3Cjstor_cross%3E41477051%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921004503&rft_id=info:pmid/22308365&rft_jstor_id=41477051&rfr_iscdi=true |