Large collective motions regulate the functional properties of glutamate transporter trimers
Glutamate transporters clear synaptically released glutamate to maintain precise communication between neurons and limit glutamate neurotoxicity. Although much progress has been made on the topology, structure, and function of these carriers, few studies have addressed large-scale structural motions...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-09, Vol.108 (37), p.15141-15146 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15146 |
---|---|
container_issue | 37 |
container_start_page | 15141 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Jiang, Jie Shrivastava, Indira H Watts, Spencer D Bahar, Ivet Amara, Susan G |
description | Glutamate transporters clear synaptically released glutamate to maintain precise communication between neurons and limit glutamate neurotoxicity. Although much progress has been made on the topology, structure, and function of these carriers, few studies have addressed large-scale structural motions collectively associated with substrate transport. Here we show that a series of single cysteine substitutions in the helical hairpin HP2 of excitatory amino acid transporter 1 form intersubunit disulfide cross-links within the trimer. After cross-linking, substrate uptake, but not substrate-activated anion conductance, is completely inhibited in these mutants. These disulfide bridges link residue pairs > 40 Å apart in the outward-facing crystal structure, and can be explained by concerted subunit movements predicted by the anisotropic network model (ANM). The existence of these global motions is further supported by the observation that single cysteine substitutions at the extracellular part of the transmembrane domain 8 can also be cross-linked by copper phenanthroline as predicted by the ANM. Interestingly, the transport domain in the un-cross-linked subunit of the trimer assumes an inward-facing orientation, suggesting that individual subunits potentially undergo separate transitions between outward- and inward-facing forms, rather than an all-or-none transition of the three subunits, a mechanism also supported by ANM-predicted intrinsic dynamics. These results shed light on how large collective motions contribute to the functional dynamics of glutamate transporters. |
doi_str_mv | 10.1073/pnas.1112216108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1112216108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41352059</jstor_id><sourcerecordid>41352059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-6ee3a1d713492219d34b5e8738da17a02b0433dfd823efc006974ae7a217dc843</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS0EokvhzAmIuKedsZ3YviChii9pJQ7QG5LlTSZpVtk42E4l_nscdtnCyZbfb57fzDD2EuEKQYnreXLxChE5xxpBP2IbBINlLQ08ZhsArkotubxgz2LcA4CpNDxlFxy1qlHChv3YutBT0fhxpCYN91QcfBr8FItA_TK6REW6o6JbpmZ9dmMxBz9TSAPFwndFPy7JHf5gwU1x9iFRyPfhQCE-Z086N0Z6cTov2e3HD99vPpfbr5--3Lzflk1V1amsiYTDVqGQJjdiWiF3FWkldOtQOeA7kEK0Xau5oK4BqI2SjpTjqNpGS3HJ3h1952V3oLahKYcZ7ZxTuPDLejfY_5VpuLO9v7cClawVZIO3J4Pgfy4Uk937JeRuo9UGKqGNUhm6PkJN8DEG6s4fINh1G3bdhn3YRq54_W-uM_93_BkoTsBa-WCnrVAWK5SYkVdHZB-TD2cmKxWHymT9zVHvnLeuD0O0t984ZPd1TmBA_AarSKWX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>890538977</pqid></control><display><type>article</type><title>Large collective motions regulate the functional properties of glutamate transporter trimers</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jiang, Jie ; Shrivastava, Indira H ; Watts, Spencer D ; Bahar, Ivet ; Amara, Susan G</creator><creatorcontrib>Jiang, Jie ; Shrivastava, Indira H ; Watts, Spencer D ; Bahar, Ivet ; Amara, Susan G</creatorcontrib><description>Glutamate transporters clear synaptically released glutamate to maintain precise communication between neurons and limit glutamate neurotoxicity. Although much progress has been made on the topology, structure, and function of these carriers, few studies have addressed large-scale structural motions collectively associated with substrate transport. Here we show that a series of single cysteine substitutions in the helical hairpin HP2 of excitatory amino acid transporter 1 form intersubunit disulfide cross-links within the trimer. After cross-linking, substrate uptake, but not substrate-activated anion conductance, is completely inhibited in these mutants. These disulfide bridges link residue pairs > 40 Å apart in the outward-facing crystal structure, and can be explained by concerted subunit movements predicted by the anisotropic network model (ANM). The existence of these global motions is further supported by the observation that single cysteine substitutions at the extracellular part of the transmembrane domain 8 can also be cross-linked by copper phenanthroline as predicted by the ANM. Interestingly, the transport domain in the un-cross-linked subunit of the trimer assumes an inward-facing orientation, suggesting that individual subunits potentially undergo separate transitions between outward- and inward-facing forms, rather than an all-or-none transition of the three subunits, a mechanism also supported by ANM-predicted intrinsic dynamics. These results shed light on how large collective motions contribute to the functional dynamics of glutamate transporters.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1112216108</identifier><identifier>PMID: 21876140</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Substitution - genetics ; Amino Acid Transport System X-AG - chemistry ; Amino Acid Transport System X-AG - metabolism ; Amino acid transport system XAG ; amino acid transporters ; Amino acids ; Anions ; Anions - metabolism ; Anisotropy ; Biological Sciences ; Biological Transport ; Cadmium - metabolism ; Cross-Linking Reagents - metabolism ; crosslinking ; Crystal structure ; cysteine ; Cysteine - genetics ; Cytoplasm ; disulfide bonds ; Disulfides ; Electric current ; Excitatory Amino Acid Transporter 1 - chemistry ; Excitatory Amino Acid Transporter 1 - metabolism ; functional properties ; Humans ; Ion Channel Gating ; Membranes ; Models, Biological ; Models, Molecular ; Motion ; Mutant Proteins - chemistry ; Mutant Proteins - metabolism ; mutants ; Mutation ; Neurons ; neurotoxicity ; Oocytes ; Phenanthrolines - metabolism ; Protein Multimerization ; Protein Structure, Secondary ; Protein Subunits - chemistry ; Protein Subunits - metabolism ; Proteins ; Reagents ; topology ; Trimers</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (37), p.15141-15146</ispartof><rights>Copyright National Academy of Sciences Sep 13, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-6ee3a1d713492219d34b5e8738da17a02b0433dfd823efc006974ae7a217dc843</citedby><cites>FETCH-LOGICAL-c556t-6ee3a1d713492219d34b5e8738da17a02b0433dfd823efc006974ae7a217dc843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/37.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41352059$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41352059$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21876140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Jie</creatorcontrib><creatorcontrib>Shrivastava, Indira H</creatorcontrib><creatorcontrib>Watts, Spencer D</creatorcontrib><creatorcontrib>Bahar, Ivet</creatorcontrib><creatorcontrib>Amara, Susan G</creatorcontrib><title>Large collective motions regulate the functional properties of glutamate transporter trimers</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Glutamate transporters clear synaptically released glutamate to maintain precise communication between neurons and limit glutamate neurotoxicity. Although much progress has been made on the topology, structure, and function of these carriers, few studies have addressed large-scale structural motions collectively associated with substrate transport. Here we show that a series of single cysteine substitutions in the helical hairpin HP2 of excitatory amino acid transporter 1 form intersubunit disulfide cross-links within the trimer. After cross-linking, substrate uptake, but not substrate-activated anion conductance, is completely inhibited in these mutants. These disulfide bridges link residue pairs > 40 Å apart in the outward-facing crystal structure, and can be explained by concerted subunit movements predicted by the anisotropic network model (ANM). The existence of these global motions is further supported by the observation that single cysteine substitutions at the extracellular part of the transmembrane domain 8 can also be cross-linked by copper phenanthroline as predicted by the ANM. Interestingly, the transport domain in the un-cross-linked subunit of the trimer assumes an inward-facing orientation, suggesting that individual subunits potentially undergo separate transitions between outward- and inward-facing forms, rather than an all-or-none transition of the three subunits, a mechanism also supported by ANM-predicted intrinsic dynamics. These results shed light on how large collective motions contribute to the functional dynamics of glutamate transporters.</description><subject>Amino Acid Substitution - genetics</subject><subject>Amino Acid Transport System X-AG - chemistry</subject><subject>Amino Acid Transport System X-AG - metabolism</subject><subject>Amino acid transport system XAG</subject><subject>amino acid transporters</subject><subject>Amino acids</subject><subject>Anions</subject><subject>Anions - metabolism</subject><subject>Anisotropy</subject><subject>Biological Sciences</subject><subject>Biological Transport</subject><subject>Cadmium - metabolism</subject><subject>Cross-Linking Reagents - metabolism</subject><subject>crosslinking</subject><subject>Crystal structure</subject><subject>cysteine</subject><subject>Cysteine - genetics</subject><subject>Cytoplasm</subject><subject>disulfide bonds</subject><subject>Disulfides</subject><subject>Electric current</subject><subject>Excitatory Amino Acid Transporter 1 - chemistry</subject><subject>Excitatory Amino Acid Transporter 1 - metabolism</subject><subject>functional properties</subject><subject>Humans</subject><subject>Ion Channel Gating</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Motion</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - metabolism</subject><subject>mutants</subject><subject>Mutation</subject><subject>Neurons</subject><subject>neurotoxicity</subject><subject>Oocytes</subject><subject>Phenanthrolines - metabolism</subject><subject>Protein Multimerization</subject><subject>Protein Structure, Secondary</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - metabolism</subject><subject>Proteins</subject><subject>Reagents</subject><subject>topology</subject><subject>Trimers</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1v1DAQxS0EokvhzAmIuKedsZ3YviChii9pJQ7QG5LlTSZpVtk42E4l_nscdtnCyZbfb57fzDD2EuEKQYnreXLxChE5xxpBP2IbBINlLQ08ZhsArkotubxgz2LcA4CpNDxlFxy1qlHChv3YutBT0fhxpCYN91QcfBr8FItA_TK6REW6o6JbpmZ9dmMxBz9TSAPFwndFPy7JHf5gwU1x9iFRyPfhQCE-Z086N0Z6cTov2e3HD99vPpfbr5--3Lzflk1V1amsiYTDVqGQJjdiWiF3FWkldOtQOeA7kEK0Xau5oK4BqI2SjpTjqNpGS3HJ3h1952V3oLahKYcZ7ZxTuPDLejfY_5VpuLO9v7cClawVZIO3J4Pgfy4Uk937JeRuo9UGKqGNUhm6PkJN8DEG6s4fINh1G3bdhn3YRq54_W-uM_93_BkoTsBa-WCnrVAWK5SYkVdHZB-TD2cmKxWHymT9zVHvnLeuD0O0t984ZPd1TmBA_AarSKWX</recordid><startdate>20110913</startdate><enddate>20110913</enddate><creator>Jiang, Jie</creator><creator>Shrivastava, Indira H</creator><creator>Watts, Spencer D</creator><creator>Bahar, Ivet</creator><creator>Amara, Susan G</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110913</creationdate><title>Large collective motions regulate the functional properties of glutamate transporter trimers</title><author>Jiang, Jie ; Shrivastava, Indira H ; Watts, Spencer D ; Bahar, Ivet ; Amara, Susan G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-6ee3a1d713492219d34b5e8738da17a02b0433dfd823efc006974ae7a217dc843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Substitution - genetics</topic><topic>Amino Acid Transport System X-AG - chemistry</topic><topic>Amino Acid Transport System X-AG - metabolism</topic><topic>Amino acid transport system XAG</topic><topic>amino acid transporters</topic><topic>Amino acids</topic><topic>Anions</topic><topic>Anions - metabolism</topic><topic>Anisotropy</topic><topic>Biological Sciences</topic><topic>Biological Transport</topic><topic>Cadmium - metabolism</topic><topic>Cross-Linking Reagents - metabolism</topic><topic>crosslinking</topic><topic>Crystal structure</topic><topic>cysteine</topic><topic>Cysteine - genetics</topic><topic>Cytoplasm</topic><topic>disulfide bonds</topic><topic>Disulfides</topic><topic>Electric current</topic><topic>Excitatory Amino Acid Transporter 1 - chemistry</topic><topic>Excitatory Amino Acid Transporter 1 - metabolism</topic><topic>functional properties</topic><topic>Humans</topic><topic>Ion Channel Gating</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Motion</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - metabolism</topic><topic>mutants</topic><topic>Mutation</topic><topic>Neurons</topic><topic>neurotoxicity</topic><topic>Oocytes</topic><topic>Phenanthrolines - metabolism</topic><topic>Protein Multimerization</topic><topic>Protein Structure, Secondary</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - metabolism</topic><topic>Proteins</topic><topic>Reagents</topic><topic>topology</topic><topic>Trimers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Jie</creatorcontrib><creatorcontrib>Shrivastava, Indira H</creatorcontrib><creatorcontrib>Watts, Spencer D</creatorcontrib><creatorcontrib>Bahar, Ivet</creatorcontrib><creatorcontrib>Amara, Susan G</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Jie</au><au>Shrivastava, Indira H</au><au>Watts, Spencer D</au><au>Bahar, Ivet</au><au>Amara, Susan G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large collective motions regulate the functional properties of glutamate transporter trimers</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-09-13</date><risdate>2011</risdate><volume>108</volume><issue>37</issue><spage>15141</spage><epage>15146</epage><pages>15141-15146</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Glutamate transporters clear synaptically released glutamate to maintain precise communication between neurons and limit glutamate neurotoxicity. Although much progress has been made on the topology, structure, and function of these carriers, few studies have addressed large-scale structural motions collectively associated with substrate transport. Here we show that a series of single cysteine substitutions in the helical hairpin HP2 of excitatory amino acid transporter 1 form intersubunit disulfide cross-links within the trimer. After cross-linking, substrate uptake, but not substrate-activated anion conductance, is completely inhibited in these mutants. These disulfide bridges link residue pairs > 40 Å apart in the outward-facing crystal structure, and can be explained by concerted subunit movements predicted by the anisotropic network model (ANM). The existence of these global motions is further supported by the observation that single cysteine substitutions at the extracellular part of the transmembrane domain 8 can also be cross-linked by copper phenanthroline as predicted by the ANM. Interestingly, the transport domain in the un-cross-linked subunit of the trimer assumes an inward-facing orientation, suggesting that individual subunits potentially undergo separate transitions between outward- and inward-facing forms, rather than an all-or-none transition of the three subunits, a mechanism also supported by ANM-predicted intrinsic dynamics. These results shed light on how large collective motions contribute to the functional dynamics of glutamate transporters.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21876140</pmid><doi>10.1073/pnas.1112216108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (37), p.15141-15146 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1112216108 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Substitution - genetics Amino Acid Transport System X-AG - chemistry Amino Acid Transport System X-AG - metabolism Amino acid transport system XAG amino acid transporters Amino acids Anions Anions - metabolism Anisotropy Biological Sciences Biological Transport Cadmium - metabolism Cross-Linking Reagents - metabolism crosslinking Crystal structure cysteine Cysteine - genetics Cytoplasm disulfide bonds Disulfides Electric current Excitatory Amino Acid Transporter 1 - chemistry Excitatory Amino Acid Transporter 1 - metabolism functional properties Humans Ion Channel Gating Membranes Models, Biological Models, Molecular Motion Mutant Proteins - chemistry Mutant Proteins - metabolism mutants Mutation Neurons neurotoxicity Oocytes Phenanthrolines - metabolism Protein Multimerization Protein Structure, Secondary Protein Subunits - chemistry Protein Subunits - metabolism Proteins Reagents topology Trimers |
title | Large collective motions regulate the functional properties of glutamate transporter trimers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20collective%20motions%20regulate%20the%20functional%20properties%20of%20glutamate%20transporter%20trimers&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jiang,%20Jie&rft.date=2011-09-13&rft.volume=108&rft.issue=37&rft.spage=15141&rft.epage=15146&rft.pages=15141-15146&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1112216108&rft_dat=%3Cjstor_cross%3E41352059%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=890538977&rft_id=info:pmid/21876140&rft_jstor_id=41352059&rfr_iscdi=true |