DNA-induced narrowing of the gyrase N-gate coordinates T-segment capture and strand passage

DNA gyrase introduces negative supercoils into DNA in an ATP-dependent reaction. DNA supercoiling is catalyzed by a strand-passage mechanism, in which a T-segment of DNA is passed through the gap in a transiently cleaved G-segment. Strand passage requires the coordinated closing and opening of three...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-08, Vol.108 (34), p.14085-14090
Hauptverfasser: Gubaev, Airat, Klostermeier, Dagmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DNA gyrase introduces negative supercoils into DNA in an ATP-dependent reaction. DNA supercoiling is catalyzed by a strand-passage mechanism, in which a T-segment of DNA is passed through the gap in a transiently cleaved G-segment. Strand passage requires the coordinated closing and opening of three protein interfaces in gyrase, the N-gate, DNA-gate, and C-gate. We show here that DNA binding to the DNA-gate of gyrase and wrapping of DNA around the C-terminal domains of GyrA induces a narrowing of the N-gate. This half-closed state prepares capture of a T-segment in the upper cavity of gyrase. Subsequent N-gate closure upon binding of ATP then poises the reaction toward strand passage. The N-gate reopens after ATP hydrolysis, allowing for further catalytic cycles. DNA binding, cleavage, and wrapping and N-gate narrowing are intimately linked events that coordinate conformational changes at the DNA and the N-gate.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1102100108