Use of Double-Stranded RNA Interference in Drosophila Cell Lines to Dissect Signal Transduction Pathways

We demonstrate the efficacy of double-stranded RNA-mediated interference (RNAi) of gene expression in generating "knock-out" phenotypes for specific proteins in several Drosophila cell lines. We prove the applicability of this technique for studying signaling cascades by dissecting the wel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2000-06, Vol.97 (12), p.6499-6503
Hauptverfasser: Clemens, James C., Worby, Carolyn A., Simonson-Leff, Nancy, Muda, Marco, Maehama, Tomohiko, Hemmings, Brian A., Dixon, Jack E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6503
container_issue 12
container_start_page 6499
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 97
creator Clemens, James C.
Worby, Carolyn A.
Simonson-Leff, Nancy
Muda, Marco
Maehama, Tomohiko
Hemmings, Brian A.
Dixon, Jack E.
description We demonstrate the efficacy of double-stranded RNA-mediated interference (RNAi) of gene expression in generating "knock-out" phenotypes for specific proteins in several Drosophila cell lines. We prove the applicability of this technique for studying signaling cascades by dissecting the well-characterized insulin signal transduction pathway. Specifically, we demonstrate that inhibiting the expression of the DSOR1 (mitogen-activated protein kinase kinase, MAPKK) prevents the activation of the downstream ERK-A (MAPK). In contrast, blocking ERK-A expression results in increased activation of DSOR1. We also show that Drosophila AKT (DAKT) activation depends on the insulin receptor substrate, CHICO (IRS1-4). Finally, we demonstrate that blocking the expression of Drosophila PTEN results in the activation of DAKT. In all cases, the interference of the biochemical cascade by RNAi is consistent with the known steps in the pathway. We extend this powerful technique to study two proteins, DSH3PX1 and Drosophila ACK (DACK). DSH3PX1 is an SH3, phox homology domain-containing protein, and DACK is homologous to the mammalian activated Cdc42 tyrosine kinase, ACK. Using RNAi, we demonstrate that DACK is upstream of DSH3PX1 phosphorylation, making DSH3PX1 an identified downstream target/substrate of ACK-like tyrosine kinases. These experiments highlight the usefulness of RNAi in dissecting complex biochemical signaling cascades and provide a highly effective method for determining the function of the identified genes arising from the Drosophila genome sequencing project.
doi_str_mv 10.1073/pnas.110149597
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_110149597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>122665</jstor_id><sourcerecordid>122665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-63fd527efae00d94bc4891cf16ecf29d06f2a1a1921c03d76fac6e2eb3c3bb8e3</originalsourceid><addsrcrecordid>eNqFks9v0zAUxyPExMrgygUJWRzglOJnJ04scZlafkyqBmLb2XKc5zVVanexA-y_x6XdVhASJx_e5_u1v-_rLHsBdAq04u82TocpAIVClrJ6lE2ASshFIenjbEIpq_K6YMVx9jSEFaVUljV9kh0DrRmXVEyy5VVA4i2Z-7HpMb-Ig3YttuTb-Sk5cxEHiwM6g6RzZD744DfLrtdkhn1PFp3DQKIn8y4ENJFcdNdO9-QyeYR2NLHzjnzVcflD34Zn2ZHVfcDn-_Mku_r44XL2OV98-XQ2O13kpoQq5oLbtmQVWo2UtrJoTFFLMBYEGstkS4VlGjRIBobythJWG4EMG25409TIT7L3O9_N2KyxNehSpF5thm6th1vldaf-nLhuqa79dwW14GWSv9nLB38zYohq3QWT0mqHfgyqAhAFo_K_IFQCSv4bfP0XuPLjkPYUFKPAKw51naDpDjJpx2FAe_9goGpbtNoWre6LToJXhzEP8F2zCXi7B7bCu7GsFDCVvodUduz7iD_jgdW_yQS83AGrEP3wcBVjQpT8FzuvxvE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201373188</pqid></control><display><type>article</type><title>Use of Double-Stranded RNA Interference in Drosophila Cell Lines to Dissect Signal Transduction Pathways</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Clemens, James C. ; Worby, Carolyn A. ; Simonson-Leff, Nancy ; Muda, Marco ; Maehama, Tomohiko ; Hemmings, Brian A. ; Dixon, Jack E.</creator><creatorcontrib>Clemens, James C. ; Worby, Carolyn A. ; Simonson-Leff, Nancy ; Muda, Marco ; Maehama, Tomohiko ; Hemmings, Brian A. ; Dixon, Jack E.</creatorcontrib><description>We demonstrate the efficacy of double-stranded RNA-mediated interference (RNAi) of gene expression in generating "knock-out" phenotypes for specific proteins in several Drosophila cell lines. We prove the applicability of this technique for studying signaling cascades by dissecting the well-characterized insulin signal transduction pathway. Specifically, we demonstrate that inhibiting the expression of the DSOR1 (mitogen-activated protein kinase kinase, MAPKK) prevents the activation of the downstream ERK-A (MAPK). In contrast, blocking ERK-A expression results in increased activation of DSOR1. We also show that Drosophila AKT (DAKT) activation depends on the insulin receptor substrate, CHICO (IRS1-4). Finally, we demonstrate that blocking the expression of Drosophila PTEN results in the activation of DAKT. In all cases, the interference of the biochemical cascade by RNAi is consistent with the known steps in the pathway. We extend this powerful technique to study two proteins, DSH3PX1 and Drosophila ACK (DACK). DSH3PX1 is an SH3, phox homology domain-containing protein, and DACK is homologous to the mammalian activated Cdc42 tyrosine kinase, ACK. Using RNAi, we demonstrate that DACK is upstream of DSH3PX1 phosphorylation, making DSH3PX1 an identified downstream target/substrate of ACK-like tyrosine kinases. These experiments highlight the usefulness of RNAi in dissecting complex biochemical signaling cascades and provide a highly effective method for determining the function of the identified genes arising from the Drosophila genome sequencing project.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.110149597</identifier><identifier>PMID: 10823906</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>ACK protein ; Animals ; Antibodies ; Biochemistry ; Biological Sciences ; cdc42 GTP-Binding Protein - metabolism ; cdc42 protein ; Cell culture techniques ; Cell Line ; Cell lines ; DAKT protein ; Docks ; Double stranded RNA ; Drosophila ; DSH3PX1 protein ; Embryonic cells ; ERK-A protein ; Genetics ; Insulin ; MAP Kinase Signaling System ; MAPK kinase ; Phosphorylation ; Proteins ; PTEN protein ; Rabbits ; Ribonucleic acid ; RNA ; RNA, Double-Stranded - physiology ; Signal Transduction ; src Homology Domains</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-06, Vol.97 (12), p.6499-6503</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 6, 2000</rights><rights>Copyright © The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-63fd527efae00d94bc4891cf16ecf29d06f2a1a1921c03d76fac6e2eb3c3bb8e3</citedby><cites>FETCH-LOGICAL-c517t-63fd527efae00d94bc4891cf16ecf29d06f2a1a1921c03d76fac6e2eb3c3bb8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/12.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/122665$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/122665$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10823906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clemens, James C.</creatorcontrib><creatorcontrib>Worby, Carolyn A.</creatorcontrib><creatorcontrib>Simonson-Leff, Nancy</creatorcontrib><creatorcontrib>Muda, Marco</creatorcontrib><creatorcontrib>Maehama, Tomohiko</creatorcontrib><creatorcontrib>Hemmings, Brian A.</creatorcontrib><creatorcontrib>Dixon, Jack E.</creatorcontrib><title>Use of Double-Stranded RNA Interference in Drosophila Cell Lines to Dissect Signal Transduction Pathways</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We demonstrate the efficacy of double-stranded RNA-mediated interference (RNAi) of gene expression in generating "knock-out" phenotypes for specific proteins in several Drosophila cell lines. We prove the applicability of this technique for studying signaling cascades by dissecting the well-characterized insulin signal transduction pathway. Specifically, we demonstrate that inhibiting the expression of the DSOR1 (mitogen-activated protein kinase kinase, MAPKK) prevents the activation of the downstream ERK-A (MAPK). In contrast, blocking ERK-A expression results in increased activation of DSOR1. We also show that Drosophila AKT (DAKT) activation depends on the insulin receptor substrate, CHICO (IRS1-4). Finally, we demonstrate that blocking the expression of Drosophila PTEN results in the activation of DAKT. In all cases, the interference of the biochemical cascade by RNAi is consistent with the known steps in the pathway. We extend this powerful technique to study two proteins, DSH3PX1 and Drosophila ACK (DACK). DSH3PX1 is an SH3, phox homology domain-containing protein, and DACK is homologous to the mammalian activated Cdc42 tyrosine kinase, ACK. Using RNAi, we demonstrate that DACK is upstream of DSH3PX1 phosphorylation, making DSH3PX1 an identified downstream target/substrate of ACK-like tyrosine kinases. These experiments highlight the usefulness of RNAi in dissecting complex biochemical signaling cascades and provide a highly effective method for determining the function of the identified genes arising from the Drosophila genome sequencing project.</description><subject>ACK protein</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>cdc42 GTP-Binding Protein - metabolism</subject><subject>cdc42 protein</subject><subject>Cell culture techniques</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>DAKT protein</subject><subject>Docks</subject><subject>Double stranded RNA</subject><subject>Drosophila</subject><subject>DSH3PX1 protein</subject><subject>Embryonic cells</subject><subject>ERK-A protein</subject><subject>Genetics</subject><subject>Insulin</subject><subject>MAP Kinase Signaling System</subject><subject>MAPK kinase</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>PTEN protein</subject><subject>Rabbits</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Double-Stranded - physiology</subject><subject>Signal Transduction</subject><subject>src Homology Domains</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks9v0zAUxyPExMrgygUJWRzglOJnJ04scZlafkyqBmLb2XKc5zVVanexA-y_x6XdVhASJx_e5_u1v-_rLHsBdAq04u82TocpAIVClrJ6lE2ASshFIenjbEIpq_K6YMVx9jSEFaVUljV9kh0DrRmXVEyy5VVA4i2Z-7HpMb-Ig3YttuTb-Sk5cxEHiwM6g6RzZD744DfLrtdkhn1PFp3DQKIn8y4ENJFcdNdO9-QyeYR2NLHzjnzVcflD34Zn2ZHVfcDn-_Mku_r44XL2OV98-XQ2O13kpoQq5oLbtmQVWo2UtrJoTFFLMBYEGstkS4VlGjRIBobythJWG4EMG25409TIT7L3O9_N2KyxNehSpF5thm6th1vldaf-nLhuqa79dwW14GWSv9nLB38zYohq3QWT0mqHfgyqAhAFo_K_IFQCSv4bfP0XuPLjkPYUFKPAKw51naDpDjJpx2FAe_9goGpbtNoWre6LToJXhzEP8F2zCXi7B7bCu7GsFDCVvodUduz7iD_jgdW_yQS83AGrEP3wcBVjQpT8FzuvxvE</recordid><startdate>20000606</startdate><enddate>20000606</enddate><creator>Clemens, James C.</creator><creator>Worby, Carolyn A.</creator><creator>Simonson-Leff, Nancy</creator><creator>Muda, Marco</creator><creator>Maehama, Tomohiko</creator><creator>Hemmings, Brian A.</creator><creator>Dixon, Jack E.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000606</creationdate><title>Use of Double-Stranded RNA Interference in Drosophila Cell Lines to Dissect Signal Transduction Pathways</title><author>Clemens, James C. ; Worby, Carolyn A. ; Simonson-Leff, Nancy ; Muda, Marco ; Maehama, Tomohiko ; Hemmings, Brian A. ; Dixon, Jack E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-63fd527efae00d94bc4891cf16ecf29d06f2a1a1921c03d76fac6e2eb3c3bb8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>ACK protein</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>cdc42 GTP-Binding Protein - metabolism</topic><topic>cdc42 protein</topic><topic>Cell culture techniques</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>DAKT protein</topic><topic>Docks</topic><topic>Double stranded RNA</topic><topic>Drosophila</topic><topic>DSH3PX1 protein</topic><topic>Embryonic cells</topic><topic>ERK-A protein</topic><topic>Genetics</topic><topic>Insulin</topic><topic>MAP Kinase Signaling System</topic><topic>MAPK kinase</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>PTEN protein</topic><topic>Rabbits</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Double-Stranded - physiology</topic><topic>Signal Transduction</topic><topic>src Homology Domains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clemens, James C.</creatorcontrib><creatorcontrib>Worby, Carolyn A.</creatorcontrib><creatorcontrib>Simonson-Leff, Nancy</creatorcontrib><creatorcontrib>Muda, Marco</creatorcontrib><creatorcontrib>Maehama, Tomohiko</creatorcontrib><creatorcontrib>Hemmings, Brian A.</creatorcontrib><creatorcontrib>Dixon, Jack E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clemens, James C.</au><au>Worby, Carolyn A.</au><au>Simonson-Leff, Nancy</au><au>Muda, Marco</au><au>Maehama, Tomohiko</au><au>Hemmings, Brian A.</au><au>Dixon, Jack E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of Double-Stranded RNA Interference in Drosophila Cell Lines to Dissect Signal Transduction Pathways</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-06-06</date><risdate>2000</risdate><volume>97</volume><issue>12</issue><spage>6499</spage><epage>6503</epage><pages>6499-6503</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We demonstrate the efficacy of double-stranded RNA-mediated interference (RNAi) of gene expression in generating "knock-out" phenotypes for specific proteins in several Drosophila cell lines. We prove the applicability of this technique for studying signaling cascades by dissecting the well-characterized insulin signal transduction pathway. Specifically, we demonstrate that inhibiting the expression of the DSOR1 (mitogen-activated protein kinase kinase, MAPKK) prevents the activation of the downstream ERK-A (MAPK). In contrast, blocking ERK-A expression results in increased activation of DSOR1. We also show that Drosophila AKT (DAKT) activation depends on the insulin receptor substrate, CHICO (IRS1-4). Finally, we demonstrate that blocking the expression of Drosophila PTEN results in the activation of DAKT. In all cases, the interference of the biochemical cascade by RNAi is consistent with the known steps in the pathway. We extend this powerful technique to study two proteins, DSH3PX1 and Drosophila ACK (DACK). DSH3PX1 is an SH3, phox homology domain-containing protein, and DACK is homologous to the mammalian activated Cdc42 tyrosine kinase, ACK. Using RNAi, we demonstrate that DACK is upstream of DSH3PX1 phosphorylation, making DSH3PX1 an identified downstream target/substrate of ACK-like tyrosine kinases. These experiments highlight the usefulness of RNAi in dissecting complex biochemical signaling cascades and provide a highly effective method for determining the function of the identified genes arising from the Drosophila genome sequencing project.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10823906</pmid><doi>10.1073/pnas.110149597</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2000-06, Vol.97 (12), p.6499-6503
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_110149597
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects ACK protein
Animals
Antibodies
Biochemistry
Biological Sciences
cdc42 GTP-Binding Protein - metabolism
cdc42 protein
Cell culture techniques
Cell Line
Cell lines
DAKT protein
Docks
Double stranded RNA
Drosophila
DSH3PX1 protein
Embryonic cells
ERK-A protein
Genetics
Insulin
MAP Kinase Signaling System
MAPK kinase
Phosphorylation
Proteins
PTEN protein
Rabbits
Ribonucleic acid
RNA
RNA, Double-Stranded - physiology
Signal Transduction
src Homology Domains
title Use of Double-Stranded RNA Interference in Drosophila Cell Lines to Dissect Signal Transduction Pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Double-Stranded%20RNA%20Interference%20in%20Drosophila%20Cell%20Lines%20to%20Dissect%20Signal%20Transduction%20Pathways&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Clemens,%20James%20C.&rft.date=2000-06-06&rft.volume=97&rft.issue=12&rft.spage=6499&rft.epage=6503&rft.pages=6499-6503&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.110149597&rft_dat=%3Cjstor_cross%3E122665%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201373188&rft_id=info:pmid/10823906&rft_jstor_id=122665&rfr_iscdi=true