Structure of a bacterial cell surface decaheme electron conduit
Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-06, Vol.108 (23), p.9384-9389 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9389 |
---|---|
container_issue | 23 |
container_start_page | 9384 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Clarke, Thomas A Edwards, Marcus J Gates, Andrew J Hall, Andrea White, Gaye F Bradley, Justin Reardon, Catherine L Shi, Liang Beliaev, Alexander S Marshall, Matthew J Wang, Zheming Watmough, Nicholas J Fredrickson, James K Zachara, John M Butt, Julea N Richardson, David J |
description | Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Ã
crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Ã
octaheme chain transects the length of the protein and is bisected by a planar 45-Ã
tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface. |
doi_str_mv | 10.1073/pnas.1017200108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1017200108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25831238</jstor_id><sourcerecordid>25831238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c614t-ca65f09c074309b0cf05d34bb2fbe863294745f630a409b71e7c2448852e500a3</originalsourceid><addsrcrecordid>eNqFkc2P0zAQxS0EYsvCmRMQceFUduxxYvsCQiu-pJU4LHu2HHeyTZXGxXaQ-O9x1NLAiZMtzW_ezLzH2HMObzkovDqMLpUfVwKAg37AVhwMXzfSwEO2AhBqraWQF-xJSjsAMLWGx-xC8AYaRLVi729znHyeIlWhq1zVOp8p9m6oPA1DlabYOU_Vhrzb0p4qGsjnGMbKh3Ez9fkpe9S5IdGz03vJ7j59_H79ZX3z7fPX6w83a99wmdfeNXUHxoOSCKYF30G9Qdm2omtJNyiMVLLuGgQnS11xUl5IqXUtqAZweMneHXUPU7unjacxRzfYQ-z3Lv6ywfX238rYb-19-GmRc45CFoHXR4GQcm-T7zP5bTliLPfY4mAj0RTozWlKDD8mStnu-zQb4UYKU7JGoABVa_FfUiuOStfaLIPP5C5McSxmzRDXRRELdHWEfAwpRerOl3Gwc9J2TtouSZeOl38bcub_RFuAVydg7lzktBVoDerZkhdHYpdyiItCrZEL1ItC54J197FP9u5WFKvKBkZo3uBvtR-_aA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871183203</pqid></control><display><type>article</type><title>Structure of a bacterial cell surface decaheme electron conduit</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Clarke, Thomas A ; Edwards, Marcus J ; Gates, Andrew J ; Hall, Andrea ; White, Gaye F ; Bradley, Justin ; Reardon, Catherine L ; Shi, Liang ; Beliaev, Alexander S ; Marshall, Matthew J ; Wang, Zheming ; Watmough, Nicholas J ; Fredrickson, James K ; Zachara, John M ; Butt, Julea N ; Richardson, David J</creator><creatorcontrib>Clarke, Thomas A ; Edwards, Marcus J ; Gates, Andrew J ; Hall, Andrea ; White, Gaye F ; Bradley, Justin ; Reardon, Catherine L ; Shi, Liang ; Beliaev, Alexander S ; Marshall, Matthew J ; Wang, Zheming ; Watmough, Nicholas J ; Fredrickson, James K ; Zachara, John M ; Butt, Julea N ; Richardson, David J ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Ã
crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Ã
octaheme chain transects the length of the protein and is bisected by a planar 45-Ã
tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1017200108</identifier><identifier>PMID: 21606337</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; appendages ; Bacteria ; Bacterial Outer Membrane Proteins - chemistry ; Bacterial Outer Membrane Proteins - genetics ; Bacterial Outer Membrane Proteins - metabolism ; Bacterial proteins ; BASIC BIOLOGICAL SCIENCES ; BINDING ENERGY ; Binding Sites - genetics ; Biochemistry ; Biological Sciences ; Cell surface ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; Cysteine - chemistry ; Cysteine - genetics ; Cysteine - metabolism ; Cytochrome c Group - chemistry ; Cytochrome c Group - genetics ; Cytochrome c Group - metabolism ; cytochrome redox ; CYTOCHROMES ; Cytochromes - chemistry ; Cytochromes - genetics ; Cytochromes - metabolism ; deca-heme ; Disulfides - chemistry ; Electrodes ; ELECTRON EXCHANGE ; Electron Spin Resonance Spectroscopy ; ELECTRON TRANSFER ; Electron Transport ; Electron transport chain ; Electronic structure ; ELECTRONS ; Environmental Molecular Sciences Laboratory ; extracellular ; flavin ; Flavin Mononucleotide - chemistry ; Flavin Mononucleotide - metabolism ; Flavin Mononucleotide - pharmacology ; flavins ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Gram-negative bacteria ; Heme - chemistry ; Heme - metabolism ; IRON ; Iron - chemistry ; Iron - metabolism ; Iron - pharmacology ; ISOALLOXAZINES ; Ligands ; MANGANESE ; Membranes ; Minerals ; Models, Molecular ; Molecular Sequence Data ; nanotechnology ; nanowire ; nanowires ; Oxidation-Reduction - drug effects ; Potentiometry ; Protein Binding ; Protein Structure, Tertiary ; PROTEINS ; Shewanella ; Shewanella - genetics ; Shewanella - metabolism ; Shewanella oneidensis ; Solvents ; SUBSTRATES ; TRANSPORT ; VALENCE</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-06, Vol.108 (23), p.9384-9389</ispartof><rights>Copyright National Academy of Sciences Jun 7, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c614t-ca65f09c074309b0cf05d34bb2fbe863294745f630a409b71e7c2448852e500a3</citedby><cites>FETCH-LOGICAL-c614t-ca65f09c074309b0cf05d34bb2fbe863294745f630a409b71e7c2448852e500a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25831238$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25831238$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21606337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1016439$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Clarke, Thomas A</creatorcontrib><creatorcontrib>Edwards, Marcus J</creatorcontrib><creatorcontrib>Gates, Andrew J</creatorcontrib><creatorcontrib>Hall, Andrea</creatorcontrib><creatorcontrib>White, Gaye F</creatorcontrib><creatorcontrib>Bradley, Justin</creatorcontrib><creatorcontrib>Reardon, Catherine L</creatorcontrib><creatorcontrib>Shi, Liang</creatorcontrib><creatorcontrib>Beliaev, Alexander S</creatorcontrib><creatorcontrib>Marshall, Matthew J</creatorcontrib><creatorcontrib>Wang, Zheming</creatorcontrib><creatorcontrib>Watmough, Nicholas J</creatorcontrib><creatorcontrib>Fredrickson, James K</creatorcontrib><creatorcontrib>Zachara, John M</creatorcontrib><creatorcontrib>Butt, Julea N</creatorcontrib><creatorcontrib>Richardson, David J</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Structure of a bacterial cell surface decaheme electron conduit</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Ã
crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Ã
octaheme chain transects the length of the protein and is bisected by a planar 45-Ã
tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.</description><subject>Amino Acid Sequence</subject><subject>appendages</subject><subject>Bacteria</subject><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Bacterial proteins</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BINDING ENERGY</subject><subject>Binding Sites - genetics</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cell surface</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>Cysteine - chemistry</subject><subject>Cysteine - genetics</subject><subject>Cysteine - metabolism</subject><subject>Cytochrome c Group - chemistry</subject><subject>Cytochrome c Group - genetics</subject><subject>Cytochrome c Group - metabolism</subject><subject>cytochrome redox</subject><subject>CYTOCHROMES</subject><subject>Cytochromes - chemistry</subject><subject>Cytochromes - genetics</subject><subject>Cytochromes - metabolism</subject><subject>deca-heme</subject><subject>Disulfides - chemistry</subject><subject>Electrodes</subject><subject>ELECTRON EXCHANGE</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>ELECTRON TRANSFER</subject><subject>Electron Transport</subject><subject>Electron transport chain</subject><subject>Electronic structure</subject><subject>ELECTRONS</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>extracellular</subject><subject>flavin</subject><subject>Flavin Mononucleotide - chemistry</subject><subject>Flavin Mononucleotide - metabolism</subject><subject>Flavin Mononucleotide - pharmacology</subject><subject>flavins</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Gram-negative bacteria</subject><subject>Heme - chemistry</subject><subject>Heme - metabolism</subject><subject>IRON</subject><subject>Iron - chemistry</subject><subject>Iron - metabolism</subject><subject>Iron - pharmacology</subject><subject>ISOALLOXAZINES</subject><subject>Ligands</subject><subject>MANGANESE</subject><subject>Membranes</subject><subject>Minerals</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>nanotechnology</subject><subject>nanowire</subject><subject>nanowires</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Potentiometry</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>PROTEINS</subject><subject>Shewanella</subject><subject>Shewanella - genetics</subject><subject>Shewanella - metabolism</subject><subject>Shewanella oneidensis</subject><subject>Solvents</subject><subject>SUBSTRATES</subject><subject>TRANSPORT</subject><subject>VALENCE</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2P0zAQxS0EYsvCmRMQceFUduxxYvsCQiu-pJU4LHu2HHeyTZXGxXaQ-O9x1NLAiZMtzW_ezLzH2HMObzkovDqMLpUfVwKAg37AVhwMXzfSwEO2AhBqraWQF-xJSjsAMLWGx-xC8AYaRLVi729znHyeIlWhq1zVOp8p9m6oPA1DlabYOU_Vhrzb0p4qGsjnGMbKh3Ez9fkpe9S5IdGz03vJ7j59_H79ZX3z7fPX6w83a99wmdfeNXUHxoOSCKYF30G9Qdm2omtJNyiMVLLuGgQnS11xUl5IqXUtqAZweMneHXUPU7unjacxRzfYQ-z3Lv6ywfX238rYb-19-GmRc45CFoHXR4GQcm-T7zP5bTliLPfY4mAj0RTozWlKDD8mStnu-zQb4UYKU7JGoABVa_FfUiuOStfaLIPP5C5McSxmzRDXRRELdHWEfAwpRerOl3Gwc9J2TtouSZeOl38bcub_RFuAVydg7lzktBVoDerZkhdHYpdyiItCrZEL1ItC54J197FP9u5WFKvKBkZo3uBvtR-_aA</recordid><startdate>20110607</startdate><enddate>20110607</enddate><creator>Clarke, Thomas A</creator><creator>Edwards, Marcus J</creator><creator>Gates, Andrew J</creator><creator>Hall, Andrea</creator><creator>White, Gaye F</creator><creator>Bradley, Justin</creator><creator>Reardon, Catherine L</creator><creator>Shi, Liang</creator><creator>Beliaev, Alexander S</creator><creator>Marshall, Matthew J</creator><creator>Wang, Zheming</creator><creator>Watmough, Nicholas J</creator><creator>Fredrickson, James K</creator><creator>Zachara, John M</creator><creator>Butt, Julea N</creator><creator>Richardson, David J</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20110607</creationdate><title>Structure of a bacterial cell surface decaheme electron conduit</title><author>Clarke, Thomas A ; Edwards, Marcus J ; Gates, Andrew J ; Hall, Andrea ; White, Gaye F ; Bradley, Justin ; Reardon, Catherine L ; Shi, Liang ; Beliaev, Alexander S ; Marshall, Matthew J ; Wang, Zheming ; Watmough, Nicholas J ; Fredrickson, James K ; Zachara, John M ; Butt, Julea N ; Richardson, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c614t-ca65f09c074309b0cf05d34bb2fbe863294745f630a409b71e7c2448852e500a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Sequence</topic><topic>appendages</topic><topic>Bacteria</topic><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Bacterial proteins</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BINDING ENERGY</topic><topic>Binding Sites - genetics</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cell surface</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>Cysteine - chemistry</topic><topic>Cysteine - genetics</topic><topic>Cysteine - metabolism</topic><topic>Cytochrome c Group - chemistry</topic><topic>Cytochrome c Group - genetics</topic><topic>Cytochrome c Group - metabolism</topic><topic>cytochrome redox</topic><topic>CYTOCHROMES</topic><topic>Cytochromes - chemistry</topic><topic>Cytochromes - genetics</topic><topic>Cytochromes - metabolism</topic><topic>deca-heme</topic><topic>Disulfides - chemistry</topic><topic>Electrodes</topic><topic>ELECTRON EXCHANGE</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>ELECTRON TRANSFER</topic><topic>Electron Transport</topic><topic>Electron transport chain</topic><topic>Electronic structure</topic><topic>ELECTRONS</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>extracellular</topic><topic>flavin</topic><topic>Flavin Mononucleotide - chemistry</topic><topic>Flavin Mononucleotide - metabolism</topic><topic>Flavin Mononucleotide - pharmacology</topic><topic>flavins</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Gram-negative bacteria</topic><topic>Heme - chemistry</topic><topic>Heme - metabolism</topic><topic>IRON</topic><topic>Iron - chemistry</topic><topic>Iron - metabolism</topic><topic>Iron - pharmacology</topic><topic>ISOALLOXAZINES</topic><topic>Ligands</topic><topic>MANGANESE</topic><topic>Membranes</topic><topic>Minerals</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>nanotechnology</topic><topic>nanowire</topic><topic>nanowires</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Potentiometry</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>PROTEINS</topic><topic>Shewanella</topic><topic>Shewanella - genetics</topic><topic>Shewanella - metabolism</topic><topic>Shewanella oneidensis</topic><topic>Solvents</topic><topic>SUBSTRATES</topic><topic>TRANSPORT</topic><topic>VALENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clarke, Thomas A</creatorcontrib><creatorcontrib>Edwards, Marcus J</creatorcontrib><creatorcontrib>Gates, Andrew J</creatorcontrib><creatorcontrib>Hall, Andrea</creatorcontrib><creatorcontrib>White, Gaye F</creatorcontrib><creatorcontrib>Bradley, Justin</creatorcontrib><creatorcontrib>Reardon, Catherine L</creatorcontrib><creatorcontrib>Shi, Liang</creatorcontrib><creatorcontrib>Beliaev, Alexander S</creatorcontrib><creatorcontrib>Marshall, Matthew J</creatorcontrib><creatorcontrib>Wang, Zheming</creatorcontrib><creatorcontrib>Watmough, Nicholas J</creatorcontrib><creatorcontrib>Fredrickson, James K</creatorcontrib><creatorcontrib>Zachara, John M</creatorcontrib><creatorcontrib>Butt, Julea N</creatorcontrib><creatorcontrib>Richardson, David J</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clarke, Thomas A</au><au>Edwards, Marcus J</au><au>Gates, Andrew J</au><au>Hall, Andrea</au><au>White, Gaye F</au><au>Bradley, Justin</au><au>Reardon, Catherine L</au><au>Shi, Liang</au><au>Beliaev, Alexander S</au><au>Marshall, Matthew J</au><au>Wang, Zheming</au><au>Watmough, Nicholas J</au><au>Fredrickson, James K</au><au>Zachara, John M</au><au>Butt, Julea N</au><au>Richardson, David J</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of a bacterial cell surface decaheme electron conduit</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-06-07</date><risdate>2011</risdate><volume>108</volume><issue>23</issue><spage>9384</spage><epage>9389</epage><pages>9384-9389</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Ã
crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Ã
octaheme chain transects the length of the protein and is bisected by a planar 45-Ã
tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21606337</pmid><doi>10.1073/pnas.1017200108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-06, Vol.108 (23), p.9384-9389 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1017200108 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence appendages Bacteria Bacterial Outer Membrane Proteins - chemistry Bacterial Outer Membrane Proteins - genetics Bacterial Outer Membrane Proteins - metabolism Bacterial proteins BASIC BIOLOGICAL SCIENCES BINDING ENERGY Binding Sites - genetics Biochemistry Biological Sciences Cell surface CRYSTAL STRUCTURE Crystallography, X-Ray Cysteine - chemistry Cysteine - genetics Cysteine - metabolism Cytochrome c Group - chemistry Cytochrome c Group - genetics Cytochrome c Group - metabolism cytochrome redox CYTOCHROMES Cytochromes - chemistry Cytochromes - genetics Cytochromes - metabolism deca-heme Disulfides - chemistry Electrodes ELECTRON EXCHANGE Electron Spin Resonance Spectroscopy ELECTRON TRANSFER Electron Transport Electron transport chain Electronic structure ELECTRONS Environmental Molecular Sciences Laboratory extracellular flavin Flavin Mononucleotide - chemistry Flavin Mononucleotide - metabolism Flavin Mononucleotide - pharmacology flavins GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE Gram-negative bacteria Heme - chemistry Heme - metabolism IRON Iron - chemistry Iron - metabolism Iron - pharmacology ISOALLOXAZINES Ligands MANGANESE Membranes Minerals Models, Molecular Molecular Sequence Data nanotechnology nanowire nanowires Oxidation-Reduction - drug effects Potentiometry Protein Binding Protein Structure, Tertiary PROTEINS Shewanella Shewanella - genetics Shewanella - metabolism Shewanella oneidensis Solvents SUBSTRATES TRANSPORT VALENCE |
title | Structure of a bacterial cell surface decaheme electron conduit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20a%20bacterial%20cell%20surface%20decaheme%20electron%20conduit&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Clarke,%20Thomas%20A&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2011-06-07&rft.volume=108&rft.issue=23&rft.spage=9384&rft.epage=9389&rft.pages=9384-9389&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1017200108&rft_dat=%3Cjstor_cross%3E25831238%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871183203&rft_id=info:pmid/21606337&rft_jstor_id=25831238&rfr_iscdi=true |