Structure of a bacterial cell surface decaheme electron conduit

Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-06, Vol.108 (23), p.9384-9389
Hauptverfasser: Clarke, Thomas A, Edwards, Marcus J, Gates, Andrew J, Hall, Andrea, White, Gaye F, Bradley, Justin, Reardon, Catherine L, Shi, Liang, Beliaev, Alexander S, Marshall, Matthew J, Wang, Zheming, Watmough, Nicholas J, Fredrickson, James K, Zachara, John M, Butt, Julea N, Richardson, David J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9389
container_issue 23
container_start_page 9384
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Clarke, Thomas A
Edwards, Marcus J
Gates, Andrew J
Hall, Andrea
White, Gaye F
Bradley, Justin
Reardon, Catherine L
Shi, Liang
Beliaev, Alexander S
Marshall, Matthew J
Wang, Zheming
Watmough, Nicholas J
Fredrickson, James K
Zachara, John M
Butt, Julea N
Richardson, David J
description Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.
doi_str_mv 10.1073/pnas.1017200108
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1017200108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25831238</jstor_id><sourcerecordid>25831238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c614t-ca65f09c074309b0cf05d34bb2fbe863294745f630a409b71e7c2448852e500a3</originalsourceid><addsrcrecordid>eNqFkc2P0zAQxS0EYsvCmRMQceFUduxxYvsCQiu-pJU4LHu2HHeyTZXGxXaQ-O9x1NLAiZMtzW_ezLzH2HMObzkovDqMLpUfVwKAg37AVhwMXzfSwEO2AhBqraWQF-xJSjsAMLWGx-xC8AYaRLVi729znHyeIlWhq1zVOp8p9m6oPA1DlabYOU_Vhrzb0p4qGsjnGMbKh3Ez9fkpe9S5IdGz03vJ7j59_H79ZX3z7fPX6w83a99wmdfeNXUHxoOSCKYF30G9Qdm2omtJNyiMVLLuGgQnS11xUl5IqXUtqAZweMneHXUPU7unjacxRzfYQ-z3Lv6ywfX238rYb-19-GmRc45CFoHXR4GQcm-T7zP5bTliLPfY4mAj0RTozWlKDD8mStnu-zQb4UYKU7JGoABVa_FfUiuOStfaLIPP5C5McSxmzRDXRRELdHWEfAwpRerOl3Gwc9J2TtouSZeOl38bcub_RFuAVydg7lzktBVoDerZkhdHYpdyiItCrZEL1ItC54J197FP9u5WFKvKBkZo3uBvtR-_aA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871183203</pqid></control><display><type>article</type><title>Structure of a bacterial cell surface decaheme electron conduit</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Clarke, Thomas A ; Edwards, Marcus J ; Gates, Andrew J ; Hall, Andrea ; White, Gaye F ; Bradley, Justin ; Reardon, Catherine L ; Shi, Liang ; Beliaev, Alexander S ; Marshall, Matthew J ; Wang, Zheming ; Watmough, Nicholas J ; Fredrickson, James K ; Zachara, John M ; Butt, Julea N ; Richardson, David J</creator><creatorcontrib>Clarke, Thomas A ; Edwards, Marcus J ; Gates, Andrew J ; Hall, Andrea ; White, Gaye F ; Bradley, Justin ; Reardon, Catherine L ; Shi, Liang ; Beliaev, Alexander S ; Marshall, Matthew J ; Wang, Zheming ; Watmough, Nicholas J ; Fredrickson, James K ; Zachara, John M ; Butt, Julea N ; Richardson, David J ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1017200108</identifier><identifier>PMID: 21606337</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; appendages ; Bacteria ; Bacterial Outer Membrane Proteins - chemistry ; Bacterial Outer Membrane Proteins - genetics ; Bacterial Outer Membrane Proteins - metabolism ; Bacterial proteins ; BASIC BIOLOGICAL SCIENCES ; BINDING ENERGY ; Binding Sites - genetics ; Biochemistry ; Biological Sciences ; Cell surface ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; Cysteine - chemistry ; Cysteine - genetics ; Cysteine - metabolism ; Cytochrome c Group - chemistry ; Cytochrome c Group - genetics ; Cytochrome c Group - metabolism ; cytochrome redox ; CYTOCHROMES ; Cytochromes - chemistry ; Cytochromes - genetics ; Cytochromes - metabolism ; deca-heme ; Disulfides - chemistry ; Electrodes ; ELECTRON EXCHANGE ; Electron Spin Resonance Spectroscopy ; ELECTRON TRANSFER ; Electron Transport ; Electron transport chain ; Electronic structure ; ELECTRONS ; Environmental Molecular Sciences Laboratory ; extracellular ; flavin ; Flavin Mononucleotide - chemistry ; Flavin Mononucleotide - metabolism ; Flavin Mononucleotide - pharmacology ; flavins ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Gram-negative bacteria ; Heme - chemistry ; Heme - metabolism ; IRON ; Iron - chemistry ; Iron - metabolism ; Iron - pharmacology ; ISOALLOXAZINES ; Ligands ; MANGANESE ; Membranes ; Minerals ; Models, Molecular ; Molecular Sequence Data ; nanotechnology ; nanowire ; nanowires ; Oxidation-Reduction - drug effects ; Potentiometry ; Protein Binding ; Protein Structure, Tertiary ; PROTEINS ; Shewanella ; Shewanella - genetics ; Shewanella - metabolism ; Shewanella oneidensis ; Solvents ; SUBSTRATES ; TRANSPORT ; VALENCE</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-06, Vol.108 (23), p.9384-9389</ispartof><rights>Copyright National Academy of Sciences Jun 7, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c614t-ca65f09c074309b0cf05d34bb2fbe863294745f630a409b71e7c2448852e500a3</citedby><cites>FETCH-LOGICAL-c614t-ca65f09c074309b0cf05d34bb2fbe863294745f630a409b71e7c2448852e500a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25831238$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25831238$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21606337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1016439$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Clarke, Thomas A</creatorcontrib><creatorcontrib>Edwards, Marcus J</creatorcontrib><creatorcontrib>Gates, Andrew J</creatorcontrib><creatorcontrib>Hall, Andrea</creatorcontrib><creatorcontrib>White, Gaye F</creatorcontrib><creatorcontrib>Bradley, Justin</creatorcontrib><creatorcontrib>Reardon, Catherine L</creatorcontrib><creatorcontrib>Shi, Liang</creatorcontrib><creatorcontrib>Beliaev, Alexander S</creatorcontrib><creatorcontrib>Marshall, Matthew J</creatorcontrib><creatorcontrib>Wang, Zheming</creatorcontrib><creatorcontrib>Watmough, Nicholas J</creatorcontrib><creatorcontrib>Fredrickson, James K</creatorcontrib><creatorcontrib>Zachara, John M</creatorcontrib><creatorcontrib>Butt, Julea N</creatorcontrib><creatorcontrib>Richardson, David J</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Structure of a bacterial cell surface decaheme electron conduit</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.</description><subject>Amino Acid Sequence</subject><subject>appendages</subject><subject>Bacteria</subject><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Bacterial proteins</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BINDING ENERGY</subject><subject>Binding Sites - genetics</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cell surface</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>Cysteine - chemistry</subject><subject>Cysteine - genetics</subject><subject>Cysteine - metabolism</subject><subject>Cytochrome c Group - chemistry</subject><subject>Cytochrome c Group - genetics</subject><subject>Cytochrome c Group - metabolism</subject><subject>cytochrome redox</subject><subject>CYTOCHROMES</subject><subject>Cytochromes - chemistry</subject><subject>Cytochromes - genetics</subject><subject>Cytochromes - metabolism</subject><subject>deca-heme</subject><subject>Disulfides - chemistry</subject><subject>Electrodes</subject><subject>ELECTRON EXCHANGE</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>ELECTRON TRANSFER</subject><subject>Electron Transport</subject><subject>Electron transport chain</subject><subject>Electronic structure</subject><subject>ELECTRONS</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>extracellular</subject><subject>flavin</subject><subject>Flavin Mononucleotide - chemistry</subject><subject>Flavin Mononucleotide - metabolism</subject><subject>Flavin Mononucleotide - pharmacology</subject><subject>flavins</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Gram-negative bacteria</subject><subject>Heme - chemistry</subject><subject>Heme - metabolism</subject><subject>IRON</subject><subject>Iron - chemistry</subject><subject>Iron - metabolism</subject><subject>Iron - pharmacology</subject><subject>ISOALLOXAZINES</subject><subject>Ligands</subject><subject>MANGANESE</subject><subject>Membranes</subject><subject>Minerals</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>nanotechnology</subject><subject>nanowire</subject><subject>nanowires</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Potentiometry</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>PROTEINS</subject><subject>Shewanella</subject><subject>Shewanella - genetics</subject><subject>Shewanella - metabolism</subject><subject>Shewanella oneidensis</subject><subject>Solvents</subject><subject>SUBSTRATES</subject><subject>TRANSPORT</subject><subject>VALENCE</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2P0zAQxS0EYsvCmRMQceFUduxxYvsCQiu-pJU4LHu2HHeyTZXGxXaQ-O9x1NLAiZMtzW_ezLzH2HMObzkovDqMLpUfVwKAg37AVhwMXzfSwEO2AhBqraWQF-xJSjsAMLWGx-xC8AYaRLVi729znHyeIlWhq1zVOp8p9m6oPA1DlabYOU_Vhrzb0p4qGsjnGMbKh3Ez9fkpe9S5IdGz03vJ7j59_H79ZX3z7fPX6w83a99wmdfeNXUHxoOSCKYF30G9Qdm2omtJNyiMVLLuGgQnS11xUl5IqXUtqAZweMneHXUPU7unjacxRzfYQ-z3Lv6ywfX238rYb-19-GmRc45CFoHXR4GQcm-T7zP5bTliLPfY4mAj0RTozWlKDD8mStnu-zQb4UYKU7JGoABVa_FfUiuOStfaLIPP5C5McSxmzRDXRRELdHWEfAwpRerOl3Gwc9J2TtouSZeOl38bcub_RFuAVydg7lzktBVoDerZkhdHYpdyiItCrZEL1ItC54J197FP9u5WFKvKBkZo3uBvtR-_aA</recordid><startdate>20110607</startdate><enddate>20110607</enddate><creator>Clarke, Thomas A</creator><creator>Edwards, Marcus J</creator><creator>Gates, Andrew J</creator><creator>Hall, Andrea</creator><creator>White, Gaye F</creator><creator>Bradley, Justin</creator><creator>Reardon, Catherine L</creator><creator>Shi, Liang</creator><creator>Beliaev, Alexander S</creator><creator>Marshall, Matthew J</creator><creator>Wang, Zheming</creator><creator>Watmough, Nicholas J</creator><creator>Fredrickson, James K</creator><creator>Zachara, John M</creator><creator>Butt, Julea N</creator><creator>Richardson, David J</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20110607</creationdate><title>Structure of a bacterial cell surface decaheme electron conduit</title><author>Clarke, Thomas A ; Edwards, Marcus J ; Gates, Andrew J ; Hall, Andrea ; White, Gaye F ; Bradley, Justin ; Reardon, Catherine L ; Shi, Liang ; Beliaev, Alexander S ; Marshall, Matthew J ; Wang, Zheming ; Watmough, Nicholas J ; Fredrickson, James K ; Zachara, John M ; Butt, Julea N ; Richardson, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c614t-ca65f09c074309b0cf05d34bb2fbe863294745f630a409b71e7c2448852e500a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Sequence</topic><topic>appendages</topic><topic>Bacteria</topic><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Bacterial proteins</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BINDING ENERGY</topic><topic>Binding Sites - genetics</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cell surface</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>Cysteine - chemistry</topic><topic>Cysteine - genetics</topic><topic>Cysteine - metabolism</topic><topic>Cytochrome c Group - chemistry</topic><topic>Cytochrome c Group - genetics</topic><topic>Cytochrome c Group - metabolism</topic><topic>cytochrome redox</topic><topic>CYTOCHROMES</topic><topic>Cytochromes - chemistry</topic><topic>Cytochromes - genetics</topic><topic>Cytochromes - metabolism</topic><topic>deca-heme</topic><topic>Disulfides - chemistry</topic><topic>Electrodes</topic><topic>ELECTRON EXCHANGE</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>ELECTRON TRANSFER</topic><topic>Electron Transport</topic><topic>Electron transport chain</topic><topic>Electronic structure</topic><topic>ELECTRONS</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>extracellular</topic><topic>flavin</topic><topic>Flavin Mononucleotide - chemistry</topic><topic>Flavin Mononucleotide - metabolism</topic><topic>Flavin Mononucleotide - pharmacology</topic><topic>flavins</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Gram-negative bacteria</topic><topic>Heme - chemistry</topic><topic>Heme - metabolism</topic><topic>IRON</topic><topic>Iron - chemistry</topic><topic>Iron - metabolism</topic><topic>Iron - pharmacology</topic><topic>ISOALLOXAZINES</topic><topic>Ligands</topic><topic>MANGANESE</topic><topic>Membranes</topic><topic>Minerals</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>nanotechnology</topic><topic>nanowire</topic><topic>nanowires</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Potentiometry</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>PROTEINS</topic><topic>Shewanella</topic><topic>Shewanella - genetics</topic><topic>Shewanella - metabolism</topic><topic>Shewanella oneidensis</topic><topic>Solvents</topic><topic>SUBSTRATES</topic><topic>TRANSPORT</topic><topic>VALENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clarke, Thomas A</creatorcontrib><creatorcontrib>Edwards, Marcus J</creatorcontrib><creatorcontrib>Gates, Andrew J</creatorcontrib><creatorcontrib>Hall, Andrea</creatorcontrib><creatorcontrib>White, Gaye F</creatorcontrib><creatorcontrib>Bradley, Justin</creatorcontrib><creatorcontrib>Reardon, Catherine L</creatorcontrib><creatorcontrib>Shi, Liang</creatorcontrib><creatorcontrib>Beliaev, Alexander S</creatorcontrib><creatorcontrib>Marshall, Matthew J</creatorcontrib><creatorcontrib>Wang, Zheming</creatorcontrib><creatorcontrib>Watmough, Nicholas J</creatorcontrib><creatorcontrib>Fredrickson, James K</creatorcontrib><creatorcontrib>Zachara, John M</creatorcontrib><creatorcontrib>Butt, Julea N</creatorcontrib><creatorcontrib>Richardson, David J</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clarke, Thomas A</au><au>Edwards, Marcus J</au><au>Gates, Andrew J</au><au>Hall, Andrea</au><au>White, Gaye F</au><au>Bradley, Justin</au><au>Reardon, Catherine L</au><au>Shi, Liang</au><au>Beliaev, Alexander S</au><au>Marshall, Matthew J</au><au>Wang, Zheming</au><au>Watmough, Nicholas J</au><au>Fredrickson, James K</au><au>Zachara, John M</au><au>Butt, Julea N</au><au>Richardson, David J</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of a bacterial cell surface decaheme electron conduit</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-06-07</date><risdate>2011</risdate><volume>108</volume><issue>23</issue><spage>9384</spage><epage>9389</epage><pages>9384-9389</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21606337</pmid><doi>10.1073/pnas.1017200108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-06, Vol.108 (23), p.9384-9389
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1017200108
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
appendages
Bacteria
Bacterial Outer Membrane Proteins - chemistry
Bacterial Outer Membrane Proteins - genetics
Bacterial Outer Membrane Proteins - metabolism
Bacterial proteins
BASIC BIOLOGICAL SCIENCES
BINDING ENERGY
Binding Sites - genetics
Biochemistry
Biological Sciences
Cell surface
CRYSTAL STRUCTURE
Crystallography, X-Ray
Cysteine - chemistry
Cysteine - genetics
Cysteine - metabolism
Cytochrome c Group - chemistry
Cytochrome c Group - genetics
Cytochrome c Group - metabolism
cytochrome redox
CYTOCHROMES
Cytochromes - chemistry
Cytochromes - genetics
Cytochromes - metabolism
deca-heme
Disulfides - chemistry
Electrodes
ELECTRON EXCHANGE
Electron Spin Resonance Spectroscopy
ELECTRON TRANSFER
Electron Transport
Electron transport chain
Electronic structure
ELECTRONS
Environmental Molecular Sciences Laboratory
extracellular
flavin
Flavin Mononucleotide - chemistry
Flavin Mononucleotide - metabolism
Flavin Mononucleotide - pharmacology
flavins
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
Gram-negative bacteria
Heme - chemistry
Heme - metabolism
IRON
Iron - chemistry
Iron - metabolism
Iron - pharmacology
ISOALLOXAZINES
Ligands
MANGANESE
Membranes
Minerals
Models, Molecular
Molecular Sequence Data
nanotechnology
nanowire
nanowires
Oxidation-Reduction - drug effects
Potentiometry
Protein Binding
Protein Structure, Tertiary
PROTEINS
Shewanella
Shewanella - genetics
Shewanella - metabolism
Shewanella oneidensis
Solvents
SUBSTRATES
TRANSPORT
VALENCE
title Structure of a bacterial cell surface decaheme electron conduit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20a%20bacterial%20cell%20surface%20decaheme%20electron%20conduit&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Clarke,%20Thomas%20A&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2011-06-07&rft.volume=108&rft.issue=23&rft.spage=9384&rft.epage=9389&rft.pages=9384-9389&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1017200108&rft_dat=%3Cjstor_cross%3E25831238%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871183203&rft_id=info:pmid/21606337&rft_jstor_id=25831238&rfr_iscdi=true