Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy

The regulation and the dynamics of membrane trafficking events have been studied primarily in in vitro models that often do not fully reflect the functional complexity found in a living multicellular organism. Here we used intravital microscopy in the salivary glands of live rodents to investigate r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-08, Vol.108 (33), p.13552-13557
Hauptverfasser: Masedunskas, Andrius, Sramkova, Monika, Parente, Laura, Sales, Katiuchia Uzzun, Amornphimoltham, Panomwat, Bugge, Thomas H, Weigert, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13557
container_issue 33
container_start_page 13552
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Masedunskas, Andrius
Sramkova, Monika
Parente, Laura
Sales, Katiuchia Uzzun
Amornphimoltham, Panomwat
Bugge, Thomas H
Weigert, Roberto
description The regulation and the dynamics of membrane trafficking events have been studied primarily in in vitro models that often do not fully reflect the functional complexity found in a living multicellular organism. Here we used intravital microscopy in the salivary glands of live rodents to investigate regulated exocytosis, a fundamental process in all of the secretory organs. We found that β-adrenergic stimulation elicits exocytosis of large secretory granules, which gradually collapse with the apical plasma membrane without any evidence of compound exocytosis, as was previously described. Furthermore, we show that the driving force required to complete the collapse of the granules is provided by the recruitment of F-actin and nonmuscle myosin II on the granule membranes that is triggered upon fusion with the plasma membrane. Our results provide information on the machinery controlling regulated secretion and show that intravital microscopy provides unique opportunities to address fundamental questions in cell biology under physiological conditions.
doi_str_mv 10.1073/pnas.1016778108
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1016778108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27979236</jstor_id><sourcerecordid>27979236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-902c5afb0d5937cdefcdff092538b560b9dd4a36c302f3477e37250a5cce15b33</originalsourceid><addsrcrecordid>eNp9kkFv1DAQhS0EokvhzAmIuNBL6NiOY_uChKrSIlVCAnrgZDmOs83KiVM7WTX_vg677QIHTh7NfPM0M88IvcbwEQOnp0OvY4pwybnAIJ6gFQaJ87KQ8BStAAjPRUGKI_Qixg0ASCbgOToiWIAAKFfo13fvbNb4kI03NtNm9N3sY9tnxneDs3dZCoNdT06Pts7snTfzmOoxJbdWu5Sr5sSMQW_bUbusa03w0fhhfomeNdpF-2r_HqPrL-c_zy7zq28XX88-X-WGCTnmEohhuqmgZpJyU9vG1E0DkjAqKlZCJeu60LQ0FEhDC84t5YSBZsZYzCpKj9Gnne4wVZ2tjV2GcWoIbafDrLxu1d-Vvr1Ra79VFDNBCCSBD3uB4G8nG0fVtdFY53Rv_RSVSBcsJQORyJP_kphRWRQCY5zQ9_-gGz-FPh3it56UpVyg0x203CwG2zxOjUEt_qrFX3XwN3W8_XPZR_7B0ARke2DpPMgJRanClDGSkDc7ZBNHHw4SXHJJ6CLxbldvtFd6Hdqorn8QwEX6P6WENMU9D1TAOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884299691</pqid></control><display><type>article</type><title>Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Masedunskas, Andrius ; Sramkova, Monika ; Parente, Laura ; Sales, Katiuchia Uzzun ; Amornphimoltham, Panomwat ; Bugge, Thomas H ; Weigert, Roberto</creator><creatorcontrib>Masedunskas, Andrius ; Sramkova, Monika ; Parente, Laura ; Sales, Katiuchia Uzzun ; Amornphimoltham, Panomwat ; Bugge, Thomas H ; Weigert, Roberto</creatorcontrib><description>The regulation and the dynamics of membrane trafficking events have been studied primarily in in vitro models that often do not fully reflect the functional complexity found in a living multicellular organism. Here we used intravital microscopy in the salivary glands of live rodents to investigate regulated exocytosis, a fundamental process in all of the secretory organs. We found that β-adrenergic stimulation elicits exocytosis of large secretory granules, which gradually collapse with the apical plasma membrane without any evidence of compound exocytosis, as was previously described. Furthermore, we show that the driving force required to complete the collapse of the granules is provided by the recruitment of F-actin and nonmuscle myosin II on the granule membranes that is triggered upon fusion with the plasma membrane. Our results provide information on the machinery controlling regulated secretion and show that intravital microscopy provides unique opportunities to address fundamental questions in cell biology under physiological conditions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1016778108</identifier><identifier>PMID: 21808006</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acinar cells ; Actins ; Actins - metabolism ; Actomyosin - physiology ; Adrenergic beta-Agonists - pharmacology ; Animals ; Biological Sciences ; Cell Membrane ; Cell membranes ; Cell Polarity ; Cellular biology ; Cytoskeleton ; Exocytosis ; Exocytosis - drug effects ; granules ; Imaging ; Membranes ; Mice ; Mice, Transgenic ; Microfilaments ; Microscopy ; Microscopy, Confocal ; Nonmuscle Myosin Type IIA ; Physiological regulation ; Plasma ; plasma membrane ; Protein Transport ; rodents ; Salivary Glands ; Secretion ; secretory granules ; Secretory vesicles ; Secretory Vesicles - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (33), p.13552-13557</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 16, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-902c5afb0d5937cdefcdff092538b560b9dd4a36c302f3477e37250a5cce15b33</citedby><cites>FETCH-LOGICAL-c589t-902c5afb0d5937cdefcdff092538b560b9dd4a36c302f3477e37250a5cce15b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27979236$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27979236$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21808006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Masedunskas, Andrius</creatorcontrib><creatorcontrib>Sramkova, Monika</creatorcontrib><creatorcontrib>Parente, Laura</creatorcontrib><creatorcontrib>Sales, Katiuchia Uzzun</creatorcontrib><creatorcontrib>Amornphimoltham, Panomwat</creatorcontrib><creatorcontrib>Bugge, Thomas H</creatorcontrib><creatorcontrib>Weigert, Roberto</creatorcontrib><title>Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The regulation and the dynamics of membrane trafficking events have been studied primarily in in vitro models that often do not fully reflect the functional complexity found in a living multicellular organism. Here we used intravital microscopy in the salivary glands of live rodents to investigate regulated exocytosis, a fundamental process in all of the secretory organs. We found that β-adrenergic stimulation elicits exocytosis of large secretory granules, which gradually collapse with the apical plasma membrane without any evidence of compound exocytosis, as was previously described. Furthermore, we show that the driving force required to complete the collapse of the granules is provided by the recruitment of F-actin and nonmuscle myosin II on the granule membranes that is triggered upon fusion with the plasma membrane. Our results provide information on the machinery controlling regulated secretion and show that intravital microscopy provides unique opportunities to address fundamental questions in cell biology under physiological conditions.</description><subject>Acinar cells</subject><subject>Actins</subject><subject>Actins - metabolism</subject><subject>Actomyosin - physiology</subject><subject>Adrenergic beta-Agonists - pharmacology</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell Membrane</subject><subject>Cell membranes</subject><subject>Cell Polarity</subject><subject>Cellular biology</subject><subject>Cytoskeleton</subject><subject>Exocytosis</subject><subject>Exocytosis - drug effects</subject><subject>granules</subject><subject>Imaging</subject><subject>Membranes</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microfilaments</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Nonmuscle Myosin Type IIA</subject><subject>Physiological regulation</subject><subject>Plasma</subject><subject>plasma membrane</subject><subject>Protein Transport</subject><subject>rodents</subject><subject>Salivary Glands</subject><subject>Secretion</subject><subject>secretory granules</subject><subject>Secretory vesicles</subject><subject>Secretory Vesicles - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kkFv1DAQhS0EokvhzAmIuNBL6NiOY_uChKrSIlVCAnrgZDmOs83KiVM7WTX_vg677QIHTh7NfPM0M88IvcbwEQOnp0OvY4pwybnAIJ6gFQaJ87KQ8BStAAjPRUGKI_Qixg0ASCbgOToiWIAAKFfo13fvbNb4kI03NtNm9N3sY9tnxneDs3dZCoNdT06Pts7snTfzmOoxJbdWu5Sr5sSMQW_bUbusa03w0fhhfomeNdpF-2r_HqPrL-c_zy7zq28XX88-X-WGCTnmEohhuqmgZpJyU9vG1E0DkjAqKlZCJeu60LQ0FEhDC84t5YSBZsZYzCpKj9Gnne4wVZ2tjV2GcWoIbafDrLxu1d-Vvr1Ra79VFDNBCCSBD3uB4G8nG0fVtdFY53Rv_RSVSBcsJQORyJP_kphRWRQCY5zQ9_-gGz-FPh3it56UpVyg0x203CwG2zxOjUEt_qrFX3XwN3W8_XPZR_7B0ARke2DpPMgJRanClDGSkDc7ZBNHHw4SXHJJ6CLxbldvtFd6Hdqorn8QwEX6P6WENMU9D1TAOQ</recordid><startdate>20110816</startdate><enddate>20110816</enddate><creator>Masedunskas, Andrius</creator><creator>Sramkova, Monika</creator><creator>Parente, Laura</creator><creator>Sales, Katiuchia Uzzun</creator><creator>Amornphimoltham, Panomwat</creator><creator>Bugge, Thomas H</creator><creator>Weigert, Roberto</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110816</creationdate><title>Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy</title><author>Masedunskas, Andrius ; Sramkova, Monika ; Parente, Laura ; Sales, Katiuchia Uzzun ; Amornphimoltham, Panomwat ; Bugge, Thomas H ; Weigert, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-902c5afb0d5937cdefcdff092538b560b9dd4a36c302f3477e37250a5cce15b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acinar cells</topic><topic>Actins</topic><topic>Actins - metabolism</topic><topic>Actomyosin - physiology</topic><topic>Adrenergic beta-Agonists - pharmacology</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell Membrane</topic><topic>Cell membranes</topic><topic>Cell Polarity</topic><topic>Cellular biology</topic><topic>Cytoskeleton</topic><topic>Exocytosis</topic><topic>Exocytosis - drug effects</topic><topic>granules</topic><topic>Imaging</topic><topic>Membranes</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microfilaments</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Nonmuscle Myosin Type IIA</topic><topic>Physiological regulation</topic><topic>Plasma</topic><topic>plasma membrane</topic><topic>Protein Transport</topic><topic>rodents</topic><topic>Salivary Glands</topic><topic>Secretion</topic><topic>secretory granules</topic><topic>Secretory vesicles</topic><topic>Secretory Vesicles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masedunskas, Andrius</creatorcontrib><creatorcontrib>Sramkova, Monika</creatorcontrib><creatorcontrib>Parente, Laura</creatorcontrib><creatorcontrib>Sales, Katiuchia Uzzun</creatorcontrib><creatorcontrib>Amornphimoltham, Panomwat</creatorcontrib><creatorcontrib>Bugge, Thomas H</creatorcontrib><creatorcontrib>Weigert, Roberto</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masedunskas, Andrius</au><au>Sramkova, Monika</au><au>Parente, Laura</au><au>Sales, Katiuchia Uzzun</au><au>Amornphimoltham, Panomwat</au><au>Bugge, Thomas H</au><au>Weigert, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-08-16</date><risdate>2011</risdate><volume>108</volume><issue>33</issue><spage>13552</spage><epage>13557</epage><pages>13552-13557</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The regulation and the dynamics of membrane trafficking events have been studied primarily in in vitro models that often do not fully reflect the functional complexity found in a living multicellular organism. Here we used intravital microscopy in the salivary glands of live rodents to investigate regulated exocytosis, a fundamental process in all of the secretory organs. We found that β-adrenergic stimulation elicits exocytosis of large secretory granules, which gradually collapse with the apical plasma membrane without any evidence of compound exocytosis, as was previously described. Furthermore, we show that the driving force required to complete the collapse of the granules is provided by the recruitment of F-actin and nonmuscle myosin II on the granule membranes that is triggered upon fusion with the plasma membrane. Our results provide information on the machinery controlling regulated secretion and show that intravital microscopy provides unique opportunities to address fundamental questions in cell biology under physiological conditions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21808006</pmid><doi>10.1073/pnas.1016778108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (33), p.13552-13557
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1016778108
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acinar cells
Actins
Actins - metabolism
Actomyosin - physiology
Adrenergic beta-Agonists - pharmacology
Animals
Biological Sciences
Cell Membrane
Cell membranes
Cell Polarity
Cellular biology
Cytoskeleton
Exocytosis
Exocytosis - drug effects
granules
Imaging
Membranes
Mice
Mice, Transgenic
Microfilaments
Microscopy
Microscopy, Confocal
Nonmuscle Myosin Type IIA
Physiological regulation
Plasma
plasma membrane
Protein Transport
rodents
Salivary Glands
Secretion
secretory granules
Secretory vesicles
Secretory Vesicles - metabolism
title Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20for%20the%20actomyosin%20complex%20in%20regulated%20exocytosis%20revealed%20by%20intravital%20microscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Masedunskas,%20Andrius&rft.date=2011-08-16&rft.volume=108&rft.issue=33&rft.spage=13552&rft.epage=13557&rft.pages=13552-13557&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1016778108&rft_dat=%3Cjstor_cross%3E27979236%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884299691&rft_id=info:pmid/21808006&rft_jstor_id=27979236&rfr_iscdi=true