Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy
The regulation and the dynamics of membrane trafficking events have been studied primarily in in vitro models that often do not fully reflect the functional complexity found in a living multicellular organism. Here we used intravital microscopy in the salivary glands of live rodents to investigate r...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-08, Vol.108 (33), p.13552-13557 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13557 |
---|---|
container_issue | 33 |
container_start_page | 13552 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Masedunskas, Andrius Sramkova, Monika Parente, Laura Sales, Katiuchia Uzzun Amornphimoltham, Panomwat Bugge, Thomas H Weigert, Roberto |
description | The regulation and the dynamics of membrane trafficking events have been studied primarily in in vitro models that often do not fully reflect the functional complexity found in a living multicellular organism. Here we used intravital microscopy in the salivary glands of live rodents to investigate regulated exocytosis, a fundamental process in all of the secretory organs. We found that β-adrenergic stimulation elicits exocytosis of large secretory granules, which gradually collapse with the apical plasma membrane without any evidence of compound exocytosis, as was previously described. Furthermore, we show that the driving force required to complete the collapse of the granules is provided by the recruitment of F-actin and nonmuscle myosin II on the granule membranes that is triggered upon fusion with the plasma membrane. Our results provide information on the machinery controlling regulated secretion and show that intravital microscopy provides unique opportunities to address fundamental questions in cell biology under physiological conditions. |
doi_str_mv | 10.1073/pnas.1016778108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1016778108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27979236</jstor_id><sourcerecordid>27979236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-902c5afb0d5937cdefcdff092538b560b9dd4a36c302f3477e37250a5cce15b33</originalsourceid><addsrcrecordid>eNp9kkFv1DAQhS0EokvhzAmIuNBL6NiOY_uChKrSIlVCAnrgZDmOs83KiVM7WTX_vg677QIHTh7NfPM0M88IvcbwEQOnp0OvY4pwybnAIJ6gFQaJ87KQ8BStAAjPRUGKI_Qixg0ASCbgOToiWIAAKFfo13fvbNb4kI03NtNm9N3sY9tnxneDs3dZCoNdT06Pts7snTfzmOoxJbdWu5Sr5sSMQW_bUbusa03w0fhhfomeNdpF-2r_HqPrL-c_zy7zq28XX88-X-WGCTnmEohhuqmgZpJyU9vG1E0DkjAqKlZCJeu60LQ0FEhDC84t5YSBZsZYzCpKj9Gnne4wVZ2tjV2GcWoIbafDrLxu1d-Vvr1Ra79VFDNBCCSBD3uB4G8nG0fVtdFY53Rv_RSVSBcsJQORyJP_kphRWRQCY5zQ9_-gGz-FPh3it56UpVyg0x203CwG2zxOjUEt_qrFX3XwN3W8_XPZR_7B0ARke2DpPMgJRanClDGSkDc7ZBNHHw4SXHJJ6CLxbldvtFd6Hdqorn8QwEX6P6WENMU9D1TAOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884299691</pqid></control><display><type>article</type><title>Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Masedunskas, Andrius ; Sramkova, Monika ; Parente, Laura ; Sales, Katiuchia Uzzun ; Amornphimoltham, Panomwat ; Bugge, Thomas H ; Weigert, Roberto</creator><creatorcontrib>Masedunskas, Andrius ; Sramkova, Monika ; Parente, Laura ; Sales, Katiuchia Uzzun ; Amornphimoltham, Panomwat ; Bugge, Thomas H ; Weigert, Roberto</creatorcontrib><description>The regulation and the dynamics of membrane trafficking events have been studied primarily in in vitro models that often do not fully reflect the functional complexity found in a living multicellular organism. Here we used intravital microscopy in the salivary glands of live rodents to investigate regulated exocytosis, a fundamental process in all of the secretory organs. We found that β-adrenergic stimulation elicits exocytosis of large secretory granules, which gradually collapse with the apical plasma membrane without any evidence of compound exocytosis, as was previously described. Furthermore, we show that the driving force required to complete the collapse of the granules is provided by the recruitment of F-actin and nonmuscle myosin II on the granule membranes that is triggered upon fusion with the plasma membrane. Our results provide information on the machinery controlling regulated secretion and show that intravital microscopy provides unique opportunities to address fundamental questions in cell biology under physiological conditions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1016778108</identifier><identifier>PMID: 21808006</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acinar cells ; Actins ; Actins - metabolism ; Actomyosin - physiology ; Adrenergic beta-Agonists - pharmacology ; Animals ; Biological Sciences ; Cell Membrane ; Cell membranes ; Cell Polarity ; Cellular biology ; Cytoskeleton ; Exocytosis ; Exocytosis - drug effects ; granules ; Imaging ; Membranes ; Mice ; Mice, Transgenic ; Microfilaments ; Microscopy ; Microscopy, Confocal ; Nonmuscle Myosin Type IIA ; Physiological regulation ; Plasma ; plasma membrane ; Protein Transport ; rodents ; Salivary Glands ; Secretion ; secretory granules ; Secretory vesicles ; Secretory Vesicles - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (33), p.13552-13557</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 16, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-902c5afb0d5937cdefcdff092538b560b9dd4a36c302f3477e37250a5cce15b33</citedby><cites>FETCH-LOGICAL-c589t-902c5afb0d5937cdefcdff092538b560b9dd4a36c302f3477e37250a5cce15b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27979236$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27979236$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21808006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Masedunskas, Andrius</creatorcontrib><creatorcontrib>Sramkova, Monika</creatorcontrib><creatorcontrib>Parente, Laura</creatorcontrib><creatorcontrib>Sales, Katiuchia Uzzun</creatorcontrib><creatorcontrib>Amornphimoltham, Panomwat</creatorcontrib><creatorcontrib>Bugge, Thomas H</creatorcontrib><creatorcontrib>Weigert, Roberto</creatorcontrib><title>Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The regulation and the dynamics of membrane trafficking events have been studied primarily in in vitro models that often do not fully reflect the functional complexity found in a living multicellular organism. Here we used intravital microscopy in the salivary glands of live rodents to investigate regulated exocytosis, a fundamental process in all of the secretory organs. We found that β-adrenergic stimulation elicits exocytosis of large secretory granules, which gradually collapse with the apical plasma membrane without any evidence of compound exocytosis, as was previously described. Furthermore, we show that the driving force required to complete the collapse of the granules is provided by the recruitment of F-actin and nonmuscle myosin II on the granule membranes that is triggered upon fusion with the plasma membrane. Our results provide information on the machinery controlling regulated secretion and show that intravital microscopy provides unique opportunities to address fundamental questions in cell biology under physiological conditions.</description><subject>Acinar cells</subject><subject>Actins</subject><subject>Actins - metabolism</subject><subject>Actomyosin - physiology</subject><subject>Adrenergic beta-Agonists - pharmacology</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell Membrane</subject><subject>Cell membranes</subject><subject>Cell Polarity</subject><subject>Cellular biology</subject><subject>Cytoskeleton</subject><subject>Exocytosis</subject><subject>Exocytosis - drug effects</subject><subject>granules</subject><subject>Imaging</subject><subject>Membranes</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microfilaments</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Nonmuscle Myosin Type IIA</subject><subject>Physiological regulation</subject><subject>Plasma</subject><subject>plasma membrane</subject><subject>Protein Transport</subject><subject>rodents</subject><subject>Salivary Glands</subject><subject>Secretion</subject><subject>secretory granules</subject><subject>Secretory vesicles</subject><subject>Secretory Vesicles - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kkFv1DAQhS0EokvhzAmIuNBL6NiOY_uChKrSIlVCAnrgZDmOs83KiVM7WTX_vg677QIHTh7NfPM0M88IvcbwEQOnp0OvY4pwybnAIJ6gFQaJ87KQ8BStAAjPRUGKI_Qixg0ASCbgOToiWIAAKFfo13fvbNb4kI03NtNm9N3sY9tnxneDs3dZCoNdT06Pts7snTfzmOoxJbdWu5Sr5sSMQW_bUbusa03w0fhhfomeNdpF-2r_HqPrL-c_zy7zq28XX88-X-WGCTnmEohhuqmgZpJyU9vG1E0DkjAqKlZCJeu60LQ0FEhDC84t5YSBZsZYzCpKj9Gnne4wVZ2tjV2GcWoIbafDrLxu1d-Vvr1Ra79VFDNBCCSBD3uB4G8nG0fVtdFY53Rv_RSVSBcsJQORyJP_kphRWRQCY5zQ9_-gGz-FPh3it56UpVyg0x203CwG2zxOjUEt_qrFX3XwN3W8_XPZR_7B0ARke2DpPMgJRanClDGSkDc7ZBNHHw4SXHJJ6CLxbldvtFd6Hdqorn8QwEX6P6WENMU9D1TAOQ</recordid><startdate>20110816</startdate><enddate>20110816</enddate><creator>Masedunskas, Andrius</creator><creator>Sramkova, Monika</creator><creator>Parente, Laura</creator><creator>Sales, Katiuchia Uzzun</creator><creator>Amornphimoltham, Panomwat</creator><creator>Bugge, Thomas H</creator><creator>Weigert, Roberto</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110816</creationdate><title>Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy</title><author>Masedunskas, Andrius ; Sramkova, Monika ; Parente, Laura ; Sales, Katiuchia Uzzun ; Amornphimoltham, Panomwat ; Bugge, Thomas H ; Weigert, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-902c5afb0d5937cdefcdff092538b560b9dd4a36c302f3477e37250a5cce15b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acinar cells</topic><topic>Actins</topic><topic>Actins - metabolism</topic><topic>Actomyosin - physiology</topic><topic>Adrenergic beta-Agonists - pharmacology</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell Membrane</topic><topic>Cell membranes</topic><topic>Cell Polarity</topic><topic>Cellular biology</topic><topic>Cytoskeleton</topic><topic>Exocytosis</topic><topic>Exocytosis - drug effects</topic><topic>granules</topic><topic>Imaging</topic><topic>Membranes</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microfilaments</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Nonmuscle Myosin Type IIA</topic><topic>Physiological regulation</topic><topic>Plasma</topic><topic>plasma membrane</topic><topic>Protein Transport</topic><topic>rodents</topic><topic>Salivary Glands</topic><topic>Secretion</topic><topic>secretory granules</topic><topic>Secretory vesicles</topic><topic>Secretory Vesicles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masedunskas, Andrius</creatorcontrib><creatorcontrib>Sramkova, Monika</creatorcontrib><creatorcontrib>Parente, Laura</creatorcontrib><creatorcontrib>Sales, Katiuchia Uzzun</creatorcontrib><creatorcontrib>Amornphimoltham, Panomwat</creatorcontrib><creatorcontrib>Bugge, Thomas H</creatorcontrib><creatorcontrib>Weigert, Roberto</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masedunskas, Andrius</au><au>Sramkova, Monika</au><au>Parente, Laura</au><au>Sales, Katiuchia Uzzun</au><au>Amornphimoltham, Panomwat</au><au>Bugge, Thomas H</au><au>Weigert, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-08-16</date><risdate>2011</risdate><volume>108</volume><issue>33</issue><spage>13552</spage><epage>13557</epage><pages>13552-13557</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The regulation and the dynamics of membrane trafficking events have been studied primarily in in vitro models that often do not fully reflect the functional complexity found in a living multicellular organism. Here we used intravital microscopy in the salivary glands of live rodents to investigate regulated exocytosis, a fundamental process in all of the secretory organs. We found that β-adrenergic stimulation elicits exocytosis of large secretory granules, which gradually collapse with the apical plasma membrane without any evidence of compound exocytosis, as was previously described. Furthermore, we show that the driving force required to complete the collapse of the granules is provided by the recruitment of F-actin and nonmuscle myosin II on the granule membranes that is triggered upon fusion with the plasma membrane. Our results provide information on the machinery controlling regulated secretion and show that intravital microscopy provides unique opportunities to address fundamental questions in cell biology under physiological conditions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21808006</pmid><doi>10.1073/pnas.1016778108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (33), p.13552-13557 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1016778108 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Acinar cells Actins Actins - metabolism Actomyosin - physiology Adrenergic beta-Agonists - pharmacology Animals Biological Sciences Cell Membrane Cell membranes Cell Polarity Cellular biology Cytoskeleton Exocytosis Exocytosis - drug effects granules Imaging Membranes Mice Mice, Transgenic Microfilaments Microscopy Microscopy, Confocal Nonmuscle Myosin Type IIA Physiological regulation Plasma plasma membrane Protein Transport rodents Salivary Glands Secretion secretory granules Secretory vesicles Secretory Vesicles - metabolism |
title | Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20for%20the%20actomyosin%20complex%20in%20regulated%20exocytosis%20revealed%20by%20intravital%20microscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Masedunskas,%20Andrius&rft.date=2011-08-16&rft.volume=108&rft.issue=33&rft.spage=13552&rft.epage=13557&rft.pages=13552-13557&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1016778108&rft_dat=%3Cjstor_cross%3E27979236%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884299691&rft_id=info:pmid/21808006&rft_jstor_id=27979236&rfr_iscdi=true |