Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus

The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-08, Vol.107 (34), p.15075-15080
Hauptverfasser: Acharya, Rudresh, Carnevale, Vincenzo, Fiorin, Giacomo, Levine, Benjamin G., Polishchuk, Alexei L., Balannik, Victoria, Samish, Ilan, Lamb, Robert A., Pinto, Lawrence H., DeGrado, William F., Klein, Michael L., Rees, Douglas C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15080
container_issue 34
container_start_page 15075
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Acharya, Rudresh
Carnevale, Vincenzo
Fiorin, Giacomo
Levine, Benjamin G.
Polishchuk, Alexei L.
Balannik, Victoria
Samish, Ilan
Lamb, Robert A.
Pinto, Lawrence H.
DeGrado, William F.
Klein, Michael L.
Rees, Douglas C.
description The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2 + and 3 + with a pK a near 6. A 1.65 Å resolution X-ray structure of the transmembrane protein (residues 25–46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.
doi_str_mv 10.1073/pnas.1007071107
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1007071107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27862196</jstor_id><sourcerecordid>27862196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-e0cbbb56eb08ff306a1134ee641f88246c0bbddfe0cc8fd0b787b8c724b458623</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi1ERZfCmRPI4sIpdJzYsXNBqiq-pFY9AGcrdibdrBI72HEl4M_jdJcucBrP-JlXM_MS8oLBWwayOp9dG_MLJEiWC4_IhkHDipo38JhsAEpZKF7yU_I0xh0ANELBE3JaQq0a4NWG_PqyhGSXFJC2rqMT2m3rhjhR39M5-MU7uoTWxdmHhS7b4NPtNkfcVyecTI45w5xPGAZLr8v7RhwcNcl1I65Sa8fg-jGh-9nSC3o3hBSfkZO-HSM-P8Qz8u3D-6-Xn4qrm4-fLy-uCitqvhQI1hgjajSg-r6CumWs4og1Z71SJa8tGNN1feas6jswUkmjrCy54ULVZXVG3u1152Qm7Cy6POyo5zBMbfihfTvof3_csNW3_k6XTQWCV1ngzUEg-O8J46KnIVocx7y6T1ErJjKmRJPJ1_-RO5-Cy9tpyeV6fSkzdL6HbPAxBuwfRmGgV1v1aqs-2po7Xv29wQP_x8cM0AOwdh7lpK64ZgKkyMjLPbKLiw9HCZlPxJq6-g20rbYP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>747958077</pqid></control><display><type>article</type><title>Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Acharya, Rudresh ; Carnevale, Vincenzo ; Fiorin, Giacomo ; Levine, Benjamin G. ; Polishchuk, Alexei L. ; Balannik, Victoria ; Samish, Ilan ; Lamb, Robert A. ; Pinto, Lawrence H. ; DeGrado, William F. ; Klein, Michael L. ; Rees, Douglas C.</creator><creatorcontrib>Acharya, Rudresh ; Carnevale, Vincenzo ; Fiorin, Giacomo ; Levine, Benjamin G. ; Polishchuk, Alexei L. ; Balannik, Victoria ; Samish, Ilan ; Lamb, Robert A. ; Pinto, Lawrence H. ; DeGrado, William F. ; Klein, Michael L. ; Rees, Douglas C.</creatorcontrib><description>The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2 + and 3 + with a pK a near 6. A 1.65 Å resolution X-ray structure of the transmembrane protein (residues 25–46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1007071107</identifier><identifier>PMID: 20689043</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Animals ; Atoms ; Biological Sciences ; Biophysical Phenomena ; Channel pores ; Conduction ; Crystal structure ; Crystallography, X-Ray ; Crystals ; Diffusion ; Envelopes ; Female ; Histidine - chemistry ; Hydrogen-Ion Concentration ; imidazole ; In Vitro Techniques ; Influenza ; Influenza A virus ; Influenza A virus - genetics ; Influenza A virus - metabolism ; Ion channels ; Ion Channels - chemistry ; Ion Channels - genetics ; Ion Channels - metabolism ; Ion Transport ; Ionizing radiation ; Ions ; Membrane proteins ; Models, Molecular ; Molecular Sequence Data ; Molecular structure ; Molecules ; Mutagenesis, Site-Directed ; Mutant Proteins - chemistry ; Mutant Proteins - genetics ; Mutant Proteins - metabolism ; Oocytes - metabolism ; Oxygen ; pH effects ; Protein Conformation ; Protein kinase A ; Protein Multimerization ; Protein Stability ; Protein structure ; Protein transport ; Proteins ; Protons ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Viral Matrix Proteins - chemistry ; Viral Matrix Proteins - genetics ; Viral Matrix Proteins - metabolism ; Viruses ; Water channels ; Xenopus</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (34), p.15075-15080</ispartof><rights>Copyright © 1993-2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 24, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-e0cbbb56eb08ff306a1134ee641f88246c0bbddfe0cc8fd0b787b8c724b458623</citedby><cites>FETCH-LOGICAL-c564t-e0cbbb56eb08ff306a1134ee641f88246c0bbddfe0cc8fd0b787b8c724b458623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/34.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27862196$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27862196$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20689043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Acharya, Rudresh</creatorcontrib><creatorcontrib>Carnevale, Vincenzo</creatorcontrib><creatorcontrib>Fiorin, Giacomo</creatorcontrib><creatorcontrib>Levine, Benjamin G.</creatorcontrib><creatorcontrib>Polishchuk, Alexei L.</creatorcontrib><creatorcontrib>Balannik, Victoria</creatorcontrib><creatorcontrib>Samish, Ilan</creatorcontrib><creatorcontrib>Lamb, Robert A.</creatorcontrib><creatorcontrib>Pinto, Lawrence H.</creatorcontrib><creatorcontrib>DeGrado, William F.</creatorcontrib><creatorcontrib>Klein, Michael L.</creatorcontrib><creatorcontrib>Rees, Douglas C.</creatorcontrib><title>Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2 + and 3 + with a pK a near 6. A 1.65 Å resolution X-ray structure of the transmembrane protein (residues 25–46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Atoms</subject><subject>Biological Sciences</subject><subject>Biophysical Phenomena</subject><subject>Channel pores</subject><subject>Conduction</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>Diffusion</subject><subject>Envelopes</subject><subject>Female</subject><subject>Histidine - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>imidazole</subject><subject>In Vitro Techniques</subject><subject>Influenza</subject><subject>Influenza A virus</subject><subject>Influenza A virus - genetics</subject><subject>Influenza A virus - metabolism</subject><subject>Ion channels</subject><subject>Ion Channels - chemistry</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>Ion Transport</subject><subject>Ionizing radiation</subject><subject>Ions</subject><subject>Membrane proteins</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - metabolism</subject><subject>Oocytes - metabolism</subject><subject>Oxygen</subject><subject>pH effects</subject><subject>Protein Conformation</subject><subject>Protein kinase A</subject><subject>Protein Multimerization</subject><subject>Protein Stability</subject><subject>Protein structure</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Protons</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Viral Matrix Proteins - chemistry</subject><subject>Viral Matrix Proteins - genetics</subject><subject>Viral Matrix Proteins - metabolism</subject><subject>Viruses</subject><subject>Water channels</subject><subject>Xenopus</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi1ERZfCmRPI4sIpdJzYsXNBqiq-pFY9AGcrdibdrBI72HEl4M_jdJcucBrP-JlXM_MS8oLBWwayOp9dG_MLJEiWC4_IhkHDipo38JhsAEpZKF7yU_I0xh0ANELBE3JaQq0a4NWG_PqyhGSXFJC2rqMT2m3rhjhR39M5-MU7uoTWxdmHhS7b4NPtNkfcVyecTI45w5xPGAZLr8v7RhwcNcl1I65Sa8fg-jGh-9nSC3o3hBSfkZO-HSM-P8Qz8u3D-6-Xn4qrm4-fLy-uCitqvhQI1hgjajSg-r6CumWs4og1Z71SJa8tGNN1feas6jswUkmjrCy54ULVZXVG3u1152Qm7Cy6POyo5zBMbfihfTvof3_csNW3_k6XTQWCV1ngzUEg-O8J46KnIVocx7y6T1ErJjKmRJPJ1_-RO5-Cy9tpyeV6fSkzdL6HbPAxBuwfRmGgV1v1aqs-2po7Xv29wQP_x8cM0AOwdh7lpK64ZgKkyMjLPbKLiw9HCZlPxJq6-g20rbYP</recordid><startdate>20100824</startdate><enddate>20100824</enddate><creator>Acharya, Rudresh</creator><creator>Carnevale, Vincenzo</creator><creator>Fiorin, Giacomo</creator><creator>Levine, Benjamin G.</creator><creator>Polishchuk, Alexei L.</creator><creator>Balannik, Victoria</creator><creator>Samish, Ilan</creator><creator>Lamb, Robert A.</creator><creator>Pinto, Lawrence H.</creator><creator>DeGrado, William F.</creator><creator>Klein, Michael L.</creator><creator>Rees, Douglas C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20100824</creationdate><title>Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus</title><author>Acharya, Rudresh ; Carnevale, Vincenzo ; Fiorin, Giacomo ; Levine, Benjamin G. ; Polishchuk, Alexei L. ; Balannik, Victoria ; Samish, Ilan ; Lamb, Robert A. ; Pinto, Lawrence H. ; DeGrado, William F. ; Klein, Michael L. ; Rees, Douglas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-e0cbbb56eb08ff306a1134ee641f88246c0bbddfe0cc8fd0b787b8c724b458623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Atoms</topic><topic>Biological Sciences</topic><topic>Biophysical Phenomena</topic><topic>Channel pores</topic><topic>Conduction</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>Diffusion</topic><topic>Envelopes</topic><topic>Female</topic><topic>Histidine - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>imidazole</topic><topic>In Vitro Techniques</topic><topic>Influenza</topic><topic>Influenza A virus</topic><topic>Influenza A virus - genetics</topic><topic>Influenza A virus - metabolism</topic><topic>Ion channels</topic><topic>Ion Channels - chemistry</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>Ion Transport</topic><topic>Ionizing radiation</topic><topic>Ions</topic><topic>Membrane proteins</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - metabolism</topic><topic>Oocytes - metabolism</topic><topic>Oxygen</topic><topic>pH effects</topic><topic>Protein Conformation</topic><topic>Protein kinase A</topic><topic>Protein Multimerization</topic><topic>Protein Stability</topic><topic>Protein structure</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Protons</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Viral Matrix Proteins - chemistry</topic><topic>Viral Matrix Proteins - genetics</topic><topic>Viral Matrix Proteins - metabolism</topic><topic>Viruses</topic><topic>Water channels</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acharya, Rudresh</creatorcontrib><creatorcontrib>Carnevale, Vincenzo</creatorcontrib><creatorcontrib>Fiorin, Giacomo</creatorcontrib><creatorcontrib>Levine, Benjamin G.</creatorcontrib><creatorcontrib>Polishchuk, Alexei L.</creatorcontrib><creatorcontrib>Balannik, Victoria</creatorcontrib><creatorcontrib>Samish, Ilan</creatorcontrib><creatorcontrib>Lamb, Robert A.</creatorcontrib><creatorcontrib>Pinto, Lawrence H.</creatorcontrib><creatorcontrib>DeGrado, William F.</creatorcontrib><creatorcontrib>Klein, Michael L.</creatorcontrib><creatorcontrib>Rees, Douglas C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acharya, Rudresh</au><au>Carnevale, Vincenzo</au><au>Fiorin, Giacomo</au><au>Levine, Benjamin G.</au><au>Polishchuk, Alexei L.</au><au>Balannik, Victoria</au><au>Samish, Ilan</au><au>Lamb, Robert A.</au><au>Pinto, Lawrence H.</au><au>DeGrado, William F.</au><au>Klein, Michael L.</au><au>Rees, Douglas C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-08-24</date><risdate>2010</risdate><volume>107</volume><issue>34</issue><spage>15075</spage><epage>15080</epage><pages>15075-15080</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2 + and 3 + with a pK a near 6. A 1.65 Å resolution X-ray structure of the transmembrane protein (residues 25–46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20689043</pmid><doi>10.1073/pnas.1007071107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (34), p.15075-15080
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1007071107
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Animals
Atoms
Biological Sciences
Biophysical Phenomena
Channel pores
Conduction
Crystal structure
Crystallography, X-Ray
Crystals
Diffusion
Envelopes
Female
Histidine - chemistry
Hydrogen-Ion Concentration
imidazole
In Vitro Techniques
Influenza
Influenza A virus
Influenza A virus - genetics
Influenza A virus - metabolism
Ion channels
Ion Channels - chemistry
Ion Channels - genetics
Ion Channels - metabolism
Ion Transport
Ionizing radiation
Ions
Membrane proteins
Models, Molecular
Molecular Sequence Data
Molecular structure
Molecules
Mutagenesis, Site-Directed
Mutant Proteins - chemistry
Mutant Proteins - genetics
Mutant Proteins - metabolism
Oocytes - metabolism
Oxygen
pH effects
Protein Conformation
Protein kinase A
Protein Multimerization
Protein Stability
Protein structure
Protein transport
Proteins
Protons
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Viral Matrix Proteins - chemistry
Viral Matrix Proteins - genetics
Viral Matrix Proteins - metabolism
Viruses
Water channels
Xenopus
title Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20mechanism%20of%20proton%20transport%20through%20the%20transmembrane%20tetrameric%20M2%20protein%20bundle%20of%20the%20influenza%20A%20virus&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Acharya,%20Rudresh&rft.date=2010-08-24&rft.volume=107&rft.issue=34&rft.spage=15075&rft.epage=15080&rft.pages=15075-15080&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1007071107&rft_dat=%3Cjstor_cross%3E27862196%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=747958077&rft_id=info:pmid/20689043&rft_jstor_id=27862196&rfr_iscdi=true