Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus
The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between th...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-08, Vol.107 (34), p.15075-15080 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15080 |
---|---|
container_issue | 34 |
container_start_page | 15075 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Acharya, Rudresh Carnevale, Vincenzo Fiorin, Giacomo Levine, Benjamin G. Polishchuk, Alexei L. Balannik, Victoria Samish, Ilan Lamb, Robert A. Pinto, Lawrence H. DeGrado, William F. Klein, Michael L. Rees, Douglas C. |
description | The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2 + and 3 + with a pK a near 6. A 1.65 Å resolution X-ray structure of the transmembrane protein (residues 25–46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models. |
doi_str_mv | 10.1073/pnas.1007071107 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1007071107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27862196</jstor_id><sourcerecordid>27862196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-e0cbbb56eb08ff306a1134ee641f88246c0bbddfe0cc8fd0b787b8c724b458623</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi1ERZfCmRPI4sIpdJzYsXNBqiq-pFY9AGcrdibdrBI72HEl4M_jdJcucBrP-JlXM_MS8oLBWwayOp9dG_MLJEiWC4_IhkHDipo38JhsAEpZKF7yU_I0xh0ANELBE3JaQq0a4NWG_PqyhGSXFJC2rqMT2m3rhjhR39M5-MU7uoTWxdmHhS7b4NPtNkfcVyecTI45w5xPGAZLr8v7RhwcNcl1I65Sa8fg-jGh-9nSC3o3hBSfkZO-HSM-P8Qz8u3D-6-Xn4qrm4-fLy-uCitqvhQI1hgjajSg-r6CumWs4og1Z71SJa8tGNN1feas6jswUkmjrCy54ULVZXVG3u1152Qm7Cy6POyo5zBMbfihfTvof3_csNW3_k6XTQWCV1ngzUEg-O8J46KnIVocx7y6T1ErJjKmRJPJ1_-RO5-Cy9tpyeV6fSkzdL6HbPAxBuwfRmGgV1v1aqs-2po7Xv29wQP_x8cM0AOwdh7lpK64ZgKkyMjLPbKLiw9HCZlPxJq6-g20rbYP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>747958077</pqid></control><display><type>article</type><title>Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Acharya, Rudresh ; Carnevale, Vincenzo ; Fiorin, Giacomo ; Levine, Benjamin G. ; Polishchuk, Alexei L. ; Balannik, Victoria ; Samish, Ilan ; Lamb, Robert A. ; Pinto, Lawrence H. ; DeGrado, William F. ; Klein, Michael L. ; Rees, Douglas C.</creator><creatorcontrib>Acharya, Rudresh ; Carnevale, Vincenzo ; Fiorin, Giacomo ; Levine, Benjamin G. ; Polishchuk, Alexei L. ; Balannik, Victoria ; Samish, Ilan ; Lamb, Robert A. ; Pinto, Lawrence H. ; DeGrado, William F. ; Klein, Michael L. ; Rees, Douglas C.</creatorcontrib><description>The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2 + and 3 + with a pK a near 6. A 1.65 Å resolution X-ray structure of the transmembrane protein (residues 25–46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1007071107</identifier><identifier>PMID: 20689043</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Animals ; Atoms ; Biological Sciences ; Biophysical Phenomena ; Channel pores ; Conduction ; Crystal structure ; Crystallography, X-Ray ; Crystals ; Diffusion ; Envelopes ; Female ; Histidine - chemistry ; Hydrogen-Ion Concentration ; imidazole ; In Vitro Techniques ; Influenza ; Influenza A virus ; Influenza A virus - genetics ; Influenza A virus - metabolism ; Ion channels ; Ion Channels - chemistry ; Ion Channels - genetics ; Ion Channels - metabolism ; Ion Transport ; Ionizing radiation ; Ions ; Membrane proteins ; Models, Molecular ; Molecular Sequence Data ; Molecular structure ; Molecules ; Mutagenesis, Site-Directed ; Mutant Proteins - chemistry ; Mutant Proteins - genetics ; Mutant Proteins - metabolism ; Oocytes - metabolism ; Oxygen ; pH effects ; Protein Conformation ; Protein kinase A ; Protein Multimerization ; Protein Stability ; Protein structure ; Protein transport ; Proteins ; Protons ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Viral Matrix Proteins - chemistry ; Viral Matrix Proteins - genetics ; Viral Matrix Proteins - metabolism ; Viruses ; Water channels ; Xenopus</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (34), p.15075-15080</ispartof><rights>Copyright © 1993-2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 24, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-e0cbbb56eb08ff306a1134ee641f88246c0bbddfe0cc8fd0b787b8c724b458623</citedby><cites>FETCH-LOGICAL-c564t-e0cbbb56eb08ff306a1134ee641f88246c0bbddfe0cc8fd0b787b8c724b458623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/34.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27862196$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27862196$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20689043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Acharya, Rudresh</creatorcontrib><creatorcontrib>Carnevale, Vincenzo</creatorcontrib><creatorcontrib>Fiorin, Giacomo</creatorcontrib><creatorcontrib>Levine, Benjamin G.</creatorcontrib><creatorcontrib>Polishchuk, Alexei L.</creatorcontrib><creatorcontrib>Balannik, Victoria</creatorcontrib><creatorcontrib>Samish, Ilan</creatorcontrib><creatorcontrib>Lamb, Robert A.</creatorcontrib><creatorcontrib>Pinto, Lawrence H.</creatorcontrib><creatorcontrib>DeGrado, William F.</creatorcontrib><creatorcontrib>Klein, Michael L.</creatorcontrib><creatorcontrib>Rees, Douglas C.</creatorcontrib><title>Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2 + and 3 + with a pK a near 6. A 1.65 Å resolution X-ray structure of the transmembrane protein (residues 25–46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Atoms</subject><subject>Biological Sciences</subject><subject>Biophysical Phenomena</subject><subject>Channel pores</subject><subject>Conduction</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>Diffusion</subject><subject>Envelopes</subject><subject>Female</subject><subject>Histidine - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>imidazole</subject><subject>In Vitro Techniques</subject><subject>Influenza</subject><subject>Influenza A virus</subject><subject>Influenza A virus - genetics</subject><subject>Influenza A virus - metabolism</subject><subject>Ion channels</subject><subject>Ion Channels - chemistry</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>Ion Transport</subject><subject>Ionizing radiation</subject><subject>Ions</subject><subject>Membrane proteins</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - metabolism</subject><subject>Oocytes - metabolism</subject><subject>Oxygen</subject><subject>pH effects</subject><subject>Protein Conformation</subject><subject>Protein kinase A</subject><subject>Protein Multimerization</subject><subject>Protein Stability</subject><subject>Protein structure</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Protons</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Viral Matrix Proteins - chemistry</subject><subject>Viral Matrix Proteins - genetics</subject><subject>Viral Matrix Proteins - metabolism</subject><subject>Viruses</subject><subject>Water channels</subject><subject>Xenopus</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi1ERZfCmRPI4sIpdJzYsXNBqiq-pFY9AGcrdibdrBI72HEl4M_jdJcucBrP-JlXM_MS8oLBWwayOp9dG_MLJEiWC4_IhkHDipo38JhsAEpZKF7yU_I0xh0ANELBE3JaQq0a4NWG_PqyhGSXFJC2rqMT2m3rhjhR39M5-MU7uoTWxdmHhS7b4NPtNkfcVyecTI45w5xPGAZLr8v7RhwcNcl1I65Sa8fg-jGh-9nSC3o3hBSfkZO-HSM-P8Qz8u3D-6-Xn4qrm4-fLy-uCitqvhQI1hgjajSg-r6CumWs4og1Z71SJa8tGNN1feas6jswUkmjrCy54ULVZXVG3u1152Qm7Cy6POyo5zBMbfihfTvof3_csNW3_k6XTQWCV1ngzUEg-O8J46KnIVocx7y6T1ErJjKmRJPJ1_-RO5-Cy9tpyeV6fSkzdL6HbPAxBuwfRmGgV1v1aqs-2po7Xv29wQP_x8cM0AOwdh7lpK64ZgKkyMjLPbKLiw9HCZlPxJq6-g20rbYP</recordid><startdate>20100824</startdate><enddate>20100824</enddate><creator>Acharya, Rudresh</creator><creator>Carnevale, Vincenzo</creator><creator>Fiorin, Giacomo</creator><creator>Levine, Benjamin G.</creator><creator>Polishchuk, Alexei L.</creator><creator>Balannik, Victoria</creator><creator>Samish, Ilan</creator><creator>Lamb, Robert A.</creator><creator>Pinto, Lawrence H.</creator><creator>DeGrado, William F.</creator><creator>Klein, Michael L.</creator><creator>Rees, Douglas C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20100824</creationdate><title>Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus</title><author>Acharya, Rudresh ; Carnevale, Vincenzo ; Fiorin, Giacomo ; Levine, Benjamin G. ; Polishchuk, Alexei L. ; Balannik, Victoria ; Samish, Ilan ; Lamb, Robert A. ; Pinto, Lawrence H. ; DeGrado, William F. ; Klein, Michael L. ; Rees, Douglas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-e0cbbb56eb08ff306a1134ee641f88246c0bbddfe0cc8fd0b787b8c724b458623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Atoms</topic><topic>Biological Sciences</topic><topic>Biophysical Phenomena</topic><topic>Channel pores</topic><topic>Conduction</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>Diffusion</topic><topic>Envelopes</topic><topic>Female</topic><topic>Histidine - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>imidazole</topic><topic>In Vitro Techniques</topic><topic>Influenza</topic><topic>Influenza A virus</topic><topic>Influenza A virus - genetics</topic><topic>Influenza A virus - metabolism</topic><topic>Ion channels</topic><topic>Ion Channels - chemistry</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>Ion Transport</topic><topic>Ionizing radiation</topic><topic>Ions</topic><topic>Membrane proteins</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - metabolism</topic><topic>Oocytes - metabolism</topic><topic>Oxygen</topic><topic>pH effects</topic><topic>Protein Conformation</topic><topic>Protein kinase A</topic><topic>Protein Multimerization</topic><topic>Protein Stability</topic><topic>Protein structure</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Protons</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Viral Matrix Proteins - chemistry</topic><topic>Viral Matrix Proteins - genetics</topic><topic>Viral Matrix Proteins - metabolism</topic><topic>Viruses</topic><topic>Water channels</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acharya, Rudresh</creatorcontrib><creatorcontrib>Carnevale, Vincenzo</creatorcontrib><creatorcontrib>Fiorin, Giacomo</creatorcontrib><creatorcontrib>Levine, Benjamin G.</creatorcontrib><creatorcontrib>Polishchuk, Alexei L.</creatorcontrib><creatorcontrib>Balannik, Victoria</creatorcontrib><creatorcontrib>Samish, Ilan</creatorcontrib><creatorcontrib>Lamb, Robert A.</creatorcontrib><creatorcontrib>Pinto, Lawrence H.</creatorcontrib><creatorcontrib>DeGrado, William F.</creatorcontrib><creatorcontrib>Klein, Michael L.</creatorcontrib><creatorcontrib>Rees, Douglas C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acharya, Rudresh</au><au>Carnevale, Vincenzo</au><au>Fiorin, Giacomo</au><au>Levine, Benjamin G.</au><au>Polishchuk, Alexei L.</au><au>Balannik, Victoria</au><au>Samish, Ilan</au><au>Lamb, Robert A.</au><au>Pinto, Lawrence H.</au><au>DeGrado, William F.</au><au>Klein, Michael L.</au><au>Rees, Douglas C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-08-24</date><risdate>2010</risdate><volume>107</volume><issue>34</issue><spage>15075</spage><epage>15080</epage><pages>15075-15080</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2 + and 3 + with a pK a near 6. A 1.65 Å resolution X-ray structure of the transmembrane protein (residues 25–46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20689043</pmid><doi>10.1073/pnas.1007071107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (34), p.15075-15080 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1007071107 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Animals Atoms Biological Sciences Biophysical Phenomena Channel pores Conduction Crystal structure Crystallography, X-Ray Crystals Diffusion Envelopes Female Histidine - chemistry Hydrogen-Ion Concentration imidazole In Vitro Techniques Influenza Influenza A virus Influenza A virus - genetics Influenza A virus - metabolism Ion channels Ion Channels - chemistry Ion Channels - genetics Ion Channels - metabolism Ion Transport Ionizing radiation Ions Membrane proteins Models, Molecular Molecular Sequence Data Molecular structure Molecules Mutagenesis, Site-Directed Mutant Proteins - chemistry Mutant Proteins - genetics Mutant Proteins - metabolism Oocytes - metabolism Oxygen pH effects Protein Conformation Protein kinase A Protein Multimerization Protein Stability Protein structure Protein transport Proteins Protons Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Viral Matrix Proteins - chemistry Viral Matrix Proteins - genetics Viral Matrix Proteins - metabolism Viruses Water channels Xenopus |
title | Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20mechanism%20of%20proton%20transport%20through%20the%20transmembrane%20tetrameric%20M2%20protein%20bundle%20of%20the%20influenza%20A%20virus&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Acharya,%20Rudresh&rft.date=2010-08-24&rft.volume=107&rft.issue=34&rft.spage=15075&rft.epage=15080&rft.pages=15075-15080&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1007071107&rft_dat=%3Cjstor_cross%3E27862196%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=747958077&rft_id=info:pmid/20689043&rft_jstor_id=27862196&rfr_iscdi=true |