Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1
Store-operated Ca²⁺ entry (SOCE) is activated by redistribution of STIM1 into puncta in discrete ER-plasma membrane junctional regions where it interacts with and activates store-operated channels (SOCs). The factors involved in precise targeting of the channels and their retention at these specific...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-11, Vol.106 (47), p.20087-20092 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20092 |
---|---|
container_issue | 47 |
container_start_page | 20087 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 106 |
creator | Pani, Biswaranjan Ong, Hwei Ling Brazer, So-ching W Liu, Xibao Rauser, Kristina Singh, Brij B Ambudkar, Indu S |
description | Store-operated Ca²⁺ entry (SOCE) is activated by redistribution of STIM1 into puncta in discrete ER-plasma membrane junctional regions where it interacts with and activates store-operated channels (SOCs). The factors involved in precise targeting of the channels and their retention at these specific microdomains are not yet defined. Here we report that caveolin-1 (Cav1) is a critical plasma membrane scaffold that retains TRPC1 within the regions where STIM1 puncta are localized following store depletion. This enables the interaction of TRPC1 with STIM1 that is required for the activation of TRPC1-SOCE. Silencing Cav1 in human submandibular gland (HSG) cells decreased plasma membrane retention of TRPC1, TRPC1-STIM1 clustering, and consequently reduced TRPC1-SOCE, without altering STIM1 puncta. Importantly, activation of TRPC1-SOCE was associated with an increase in TRPC1-STIM1 and a decrease in TRPC1-Cav1 clustering. Consistent with this, overexpression of Cav1 decreased TRPC1-STIM1 clustering and SOCE, both of which were recovered when STIM1 was expressed at higher levels relative to Cav1. Silencing STIM1 or expression of ΔERM-STIM1 or STIM1(⁶⁸⁴EE⁶⁸⁵) mutant prevented dissociation of TRPC1-Cav1 and activation of TRPC1-SOCE. However expression of TRPC1-(⁶³⁹KK⁶⁴⁰) with STIM1(⁶⁸⁴EE⁶⁸⁵) restored function and the dissociation of TRPC1 from Cav1 in response to store depletion. Further, conditions that promoted TRPC1-STIM1 clustering and TRPC1-SOCE elicited corresponding changes in SOCE-dependent NFkB activation and cell proliferation. Together these data demonstrate that Cav1 is a critical plasma membrane scaffold for inactive TRPC1. We suggest that activation of TRPC1-SOC by STIM1 mediates release of the channel from Cav1. |
doi_str_mv | 10.1073/pnas.0905002106 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0905002106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25593328</jstor_id><sourcerecordid>25593328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621t-39763b8396f0b4b10cb5bfdf05c452e7907dc875a12ae43b69f33fbf679e12773</originalsourceid><addsrcrecordid>eNqFkUFvEzEQhVcIREvhzAmwOIA4bDu2d9f2BamKClRqRdWmZ8vr2I0jr53am4j-exwSNcABTpZmvnnjea-qXmM4xsDoyTKofAwCWgCCoXtSHWIQuO4aAU-rw1JkNW9Ic1C9yHkBAKLl8Lw6wIILxgg_rOKpHt1ajS4GFC2aXl9NMOof0M30_BIjF9DZdX11iQanU5zFQbmQS3Ud_dpklIw3KpvN4Dg3SM9VCMYjm-KA3JhR1sra6GdIq7WJ3oUav6yeWeWzebV7j6rbL2fTybf64vvX88npRa07gseaCtbRnlPRWeibHoPu297OLLS6aYlhAthMc9YqTJRpaN8JS6ntbceEwYQxelR93uouV_1gZtqEMSkvl8kNKj3IqJz8sxPcXN7FtSSMt0R0ReDjTiDF-5XJoxxc1sZ7FUxcZcloU9wlAIX88E-SYNIAB1HA93-Bi7hKodggCeAG847SAp1soWJ4zsnYxz9jkJvM5SZzuc-8TLz9_dQ9vwu5AGgHbCb3cp1sWNkMfGPXp_8g0q68H82PsbBvtuwijzE9wqRtBaW_1r3b9q2KUt0ll-XtTTmQAmbACcf0J71Q0hw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201418633</pqid></control><display><type>article</type><title>Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Pani, Biswaranjan ; Ong, Hwei Ling ; Brazer, So-ching W ; Liu, Xibao ; Rauser, Kristina ; Singh, Brij B ; Ambudkar, Indu S</creator><creatorcontrib>Pani, Biswaranjan ; Ong, Hwei Ling ; Brazer, So-ching W ; Liu, Xibao ; Rauser, Kristina ; Singh, Brij B ; Ambudkar, Indu S</creatorcontrib><description>Store-operated Ca²⁺ entry (SOCE) is activated by redistribution of STIM1 into puncta in discrete ER-plasma membrane junctional regions where it interacts with and activates store-operated channels (SOCs). The factors involved in precise targeting of the channels and their retention at these specific microdomains are not yet defined. Here we report that caveolin-1 (Cav1) is a critical plasma membrane scaffold that retains TRPC1 within the regions where STIM1 puncta are localized following store depletion. This enables the interaction of TRPC1 with STIM1 that is required for the activation of TRPC1-SOCE. Silencing Cav1 in human submandibular gland (HSG) cells decreased plasma membrane retention of TRPC1, TRPC1-STIM1 clustering, and consequently reduced TRPC1-SOCE, without altering STIM1 puncta. Importantly, activation of TRPC1-SOCE was associated with an increase in TRPC1-STIM1 and a decrease in TRPC1-Cav1 clustering. Consistent with this, overexpression of Cav1 decreased TRPC1-STIM1 clustering and SOCE, both of which were recovered when STIM1 was expressed at higher levels relative to Cav1. Silencing STIM1 or expression of ΔERM-STIM1 or STIM1(⁶⁸⁴EE⁶⁸⁵) mutant prevented dissociation of TRPC1-Cav1 and activation of TRPC1-SOCE. However expression of TRPC1-(⁶³⁹KK⁶⁴⁰) with STIM1(⁶⁸⁴EE⁶⁸⁵) restored function and the dissociation of TRPC1 from Cav1 in response to store depletion. Further, conditions that promoted TRPC1-STIM1 clustering and TRPC1-SOCE elicited corresponding changes in SOCE-dependent NFkB activation and cell proliferation. Together these data demonstrate that Cav1 is a critical plasma membrane scaffold for inactive TRPC1. We suggest that activation of TRPC1-SOC by STIM1 mediates release of the channel from Cav1.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0905002106</identifier><identifier>PMID: 19897728</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Calcium ; Calcium - metabolism ; Caveolin 1 - genetics ; Caveolin 1 - metabolism ; Cell growth ; Cell Line ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cell membranes ; Cell Proliferation ; Cellular immunity ; Endoplasmic Reticulum - metabolism ; Endothelial cells ; Humans ; Immunoprecipitation ; Lipids ; Membrane Microdomains - metabolism ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Membranes ; Mutation ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; NF-kappa B - metabolism ; Physiological regulation ; Plasma ; Plasma interactions ; Protein folding ; Proteins ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Scaffolds ; Stromal Interaction Molecule 1 ; TRPC Cation Channels - genetics ; TRPC Cation Channels - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-11, Vol.106 (47), p.20087-20092</ispartof><rights>Copyright National Academy of Sciences Nov 24, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c621t-39763b8396f0b4b10cb5bfdf05c452e7907dc875a12ae43b69f33fbf679e12773</citedby><cites>FETCH-LOGICAL-c621t-39763b8396f0b4b10cb5bfdf05c452e7907dc875a12ae43b69f33fbf679e12773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/47.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25593328$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25593328$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19897728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pani, Biswaranjan</creatorcontrib><creatorcontrib>Ong, Hwei Ling</creatorcontrib><creatorcontrib>Brazer, So-ching W</creatorcontrib><creatorcontrib>Liu, Xibao</creatorcontrib><creatorcontrib>Rauser, Kristina</creatorcontrib><creatorcontrib>Singh, Brij B</creatorcontrib><creatorcontrib>Ambudkar, Indu S</creatorcontrib><title>Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Store-operated Ca²⁺ entry (SOCE) is activated by redistribution of STIM1 into puncta in discrete ER-plasma membrane junctional regions where it interacts with and activates store-operated channels (SOCs). The factors involved in precise targeting of the channels and their retention at these specific microdomains are not yet defined. Here we report that caveolin-1 (Cav1) is a critical plasma membrane scaffold that retains TRPC1 within the regions where STIM1 puncta are localized following store depletion. This enables the interaction of TRPC1 with STIM1 that is required for the activation of TRPC1-SOCE. Silencing Cav1 in human submandibular gland (HSG) cells decreased plasma membrane retention of TRPC1, TRPC1-STIM1 clustering, and consequently reduced TRPC1-SOCE, without altering STIM1 puncta. Importantly, activation of TRPC1-SOCE was associated with an increase in TRPC1-STIM1 and a decrease in TRPC1-Cav1 clustering. Consistent with this, overexpression of Cav1 decreased TRPC1-STIM1 clustering and SOCE, both of which were recovered when STIM1 was expressed at higher levels relative to Cav1. Silencing STIM1 or expression of ΔERM-STIM1 or STIM1(⁶⁸⁴EE⁶⁸⁵) mutant prevented dissociation of TRPC1-Cav1 and activation of TRPC1-SOCE. However expression of TRPC1-(⁶³⁹KK⁶⁴⁰) with STIM1(⁶⁸⁴EE⁶⁸⁵) restored function and the dissociation of TRPC1 from Cav1 in response to store depletion. Further, conditions that promoted TRPC1-STIM1 clustering and TRPC1-SOCE elicited corresponding changes in SOCE-dependent NFkB activation and cell proliferation. Together these data demonstrate that Cav1 is a critical plasma membrane scaffold for inactive TRPC1. We suggest that activation of TRPC1-SOC by STIM1 mediates release of the channel from Cav1.</description><subject>Biological Sciences</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Caveolin 1 - genetics</subject><subject>Caveolin 1 - metabolism</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Cell Proliferation</subject><subject>Cellular immunity</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endothelial cells</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Lipids</subject><subject>Membrane Microdomains - metabolism</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Mutation</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>NF-kappa B - metabolism</subject><subject>Physiological regulation</subject><subject>Plasma</subject><subject>Plasma interactions</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Scaffolds</subject><subject>Stromal Interaction Molecule 1</subject><subject>TRPC Cation Channels - genetics</subject><subject>TRPC Cation Channels - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFvEzEQhVcIREvhzAmwOIA4bDu2d9f2BamKClRqRdWmZ8vr2I0jr53am4j-exwSNcABTpZmvnnjea-qXmM4xsDoyTKofAwCWgCCoXtSHWIQuO4aAU-rw1JkNW9Ic1C9yHkBAKLl8Lw6wIILxgg_rOKpHt1ajS4GFC2aXl9NMOof0M30_BIjF9DZdX11iQanU5zFQbmQS3Ud_dpklIw3KpvN4Dg3SM9VCMYjm-KA3JhR1sra6GdIq7WJ3oUav6yeWeWzebV7j6rbL2fTybf64vvX88npRa07gseaCtbRnlPRWeibHoPu297OLLS6aYlhAthMc9YqTJRpaN8JS6ntbceEwYQxelR93uouV_1gZtqEMSkvl8kNKj3IqJz8sxPcXN7FtSSMt0R0ReDjTiDF-5XJoxxc1sZ7FUxcZcloU9wlAIX88E-SYNIAB1HA93-Bi7hKodggCeAG847SAp1soWJ4zsnYxz9jkJvM5SZzuc-8TLz9_dQ9vwu5AGgHbCb3cp1sWNkMfGPXp_8g0q68H82PsbBvtuwijzE9wqRtBaW_1r3b9q2KUt0ll-XtTTmQAmbACcf0J71Q0hw</recordid><startdate>20091124</startdate><enddate>20091124</enddate><creator>Pani, Biswaranjan</creator><creator>Ong, Hwei Ling</creator><creator>Brazer, So-ching W</creator><creator>Liu, Xibao</creator><creator>Rauser, Kristina</creator><creator>Singh, Brij B</creator><creator>Ambudkar, Indu S</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091124</creationdate><title>Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1</title><author>Pani, Biswaranjan ; Ong, Hwei Ling ; Brazer, So-ching W ; Liu, Xibao ; Rauser, Kristina ; Singh, Brij B ; Ambudkar, Indu S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621t-39763b8396f0b4b10cb5bfdf05c452e7907dc875a12ae43b69f33fbf679e12773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological Sciences</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Caveolin 1 - genetics</topic><topic>Caveolin 1 - metabolism</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Cell Proliferation</topic><topic>Cellular immunity</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endothelial cells</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Lipids</topic><topic>Membrane Microdomains - metabolism</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Mutation</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>NF-kappa B - metabolism</topic><topic>Physiological regulation</topic><topic>Plasma</topic><topic>Plasma interactions</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Scaffolds</topic><topic>Stromal Interaction Molecule 1</topic><topic>TRPC Cation Channels - genetics</topic><topic>TRPC Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pani, Biswaranjan</creatorcontrib><creatorcontrib>Ong, Hwei Ling</creatorcontrib><creatorcontrib>Brazer, So-ching W</creatorcontrib><creatorcontrib>Liu, Xibao</creatorcontrib><creatorcontrib>Rauser, Kristina</creatorcontrib><creatorcontrib>Singh, Brij B</creatorcontrib><creatorcontrib>Ambudkar, Indu S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pani, Biswaranjan</au><au>Ong, Hwei Ling</au><au>Brazer, So-ching W</au><au>Liu, Xibao</au><au>Rauser, Kristina</au><au>Singh, Brij B</au><au>Ambudkar, Indu S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-11-24</date><risdate>2009</risdate><volume>106</volume><issue>47</issue><spage>20087</spage><epage>20092</epage><pages>20087-20092</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Store-operated Ca²⁺ entry (SOCE) is activated by redistribution of STIM1 into puncta in discrete ER-plasma membrane junctional regions where it interacts with and activates store-operated channels (SOCs). The factors involved in precise targeting of the channels and their retention at these specific microdomains are not yet defined. Here we report that caveolin-1 (Cav1) is a critical plasma membrane scaffold that retains TRPC1 within the regions where STIM1 puncta are localized following store depletion. This enables the interaction of TRPC1 with STIM1 that is required for the activation of TRPC1-SOCE. Silencing Cav1 in human submandibular gland (HSG) cells decreased plasma membrane retention of TRPC1, TRPC1-STIM1 clustering, and consequently reduced TRPC1-SOCE, without altering STIM1 puncta. Importantly, activation of TRPC1-SOCE was associated with an increase in TRPC1-STIM1 and a decrease in TRPC1-Cav1 clustering. Consistent with this, overexpression of Cav1 decreased TRPC1-STIM1 clustering and SOCE, both of which were recovered when STIM1 was expressed at higher levels relative to Cav1. Silencing STIM1 or expression of ΔERM-STIM1 or STIM1(⁶⁸⁴EE⁶⁸⁵) mutant prevented dissociation of TRPC1-Cav1 and activation of TRPC1-SOCE. However expression of TRPC1-(⁶³⁹KK⁶⁴⁰) with STIM1(⁶⁸⁴EE⁶⁸⁵) restored function and the dissociation of TRPC1 from Cav1 in response to store depletion. Further, conditions that promoted TRPC1-STIM1 clustering and TRPC1-SOCE elicited corresponding changes in SOCE-dependent NFkB activation and cell proliferation. Together these data demonstrate that Cav1 is a critical plasma membrane scaffold for inactive TRPC1. We suggest that activation of TRPC1-SOC by STIM1 mediates release of the channel from Cav1.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19897728</pmid><doi>10.1073/pnas.0905002106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2009-11, Vol.106 (47), p.20087-20092 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_0905002106 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Calcium Calcium - metabolism Caveolin 1 - genetics Caveolin 1 - metabolism Cell growth Cell Line Cell Membrane - chemistry Cell Membrane - metabolism Cell membranes Cell Proliferation Cellular immunity Endoplasmic Reticulum - metabolism Endothelial cells Humans Immunoprecipitation Lipids Membrane Microdomains - metabolism Membrane Proteins - genetics Membrane Proteins - metabolism Membranes Mutation Neoplasm Proteins - genetics Neoplasm Proteins - metabolism NF-kappa B - metabolism Physiological regulation Plasma Plasma interactions Protein folding Proteins Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism RNA, Small Interfering - genetics RNA, Small Interfering - metabolism Scaffolds Stromal Interaction Molecule 1 TRPC Cation Channels - genetics TRPC Cation Channels - metabolism |
title | Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20TRPC1%20by%20STIM1%20in%20ER-PM%20microdomains%20involves%20release%20of%20the%20channel%20from%20its%20scaffold%20caveolin-1&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pani,%20Biswaranjan&rft.date=2009-11-24&rft.volume=106&rft.issue=47&rft.spage=20087&rft.epage=20092&rft.pages=20087-20092&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0905002106&rft_dat=%3Cjstor_cross%3E25593328%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201418633&rft_id=info:pmid/19897728&rft_jstor_id=25593328&rfr_iscdi=true |