Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1

Store-operated Ca²⁺ entry (SOCE) is activated by redistribution of STIM1 into puncta in discrete ER-plasma membrane junctional regions where it interacts with and activates store-operated channels (SOCs). The factors involved in precise targeting of the channels and their retention at these specific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2009-11, Vol.106 (47), p.20087-20092
Hauptverfasser: Pani, Biswaranjan, Ong, Hwei Ling, Brazer, So-ching W, Liu, Xibao, Rauser, Kristina, Singh, Brij B, Ambudkar, Indu S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20092
container_issue 47
container_start_page 20087
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 106
creator Pani, Biswaranjan
Ong, Hwei Ling
Brazer, So-ching W
Liu, Xibao
Rauser, Kristina
Singh, Brij B
Ambudkar, Indu S
description Store-operated Ca²⁺ entry (SOCE) is activated by redistribution of STIM1 into puncta in discrete ER-plasma membrane junctional regions where it interacts with and activates store-operated channels (SOCs). The factors involved in precise targeting of the channels and their retention at these specific microdomains are not yet defined. Here we report that caveolin-1 (Cav1) is a critical plasma membrane scaffold that retains TRPC1 within the regions where STIM1 puncta are localized following store depletion. This enables the interaction of TRPC1 with STIM1 that is required for the activation of TRPC1-SOCE. Silencing Cav1 in human submandibular gland (HSG) cells decreased plasma membrane retention of TRPC1, TRPC1-STIM1 clustering, and consequently reduced TRPC1-SOCE, without altering STIM1 puncta. Importantly, activation of TRPC1-SOCE was associated with an increase in TRPC1-STIM1 and a decrease in TRPC1-Cav1 clustering. Consistent with this, overexpression of Cav1 decreased TRPC1-STIM1 clustering and SOCE, both of which were recovered when STIM1 was expressed at higher levels relative to Cav1. Silencing STIM1 or expression of ΔERM-STIM1 or STIM1(⁶⁸⁴EE⁶⁸⁵) mutant prevented dissociation of TRPC1-Cav1 and activation of TRPC1-SOCE. However expression of TRPC1-(⁶³⁹KK⁶⁴⁰) with STIM1(⁶⁸⁴EE⁶⁸⁵) restored function and the dissociation of TRPC1 from Cav1 in response to store depletion. Further, conditions that promoted TRPC1-STIM1 clustering and TRPC1-SOCE elicited corresponding changes in SOCE-dependent NFkB activation and cell proliferation. Together these data demonstrate that Cav1 is a critical plasma membrane scaffold for inactive TRPC1. We suggest that activation of TRPC1-SOC by STIM1 mediates release of the channel from Cav1.
doi_str_mv 10.1073/pnas.0905002106
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0905002106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25593328</jstor_id><sourcerecordid>25593328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621t-39763b8396f0b4b10cb5bfdf05c452e7907dc875a12ae43b69f33fbf679e12773</originalsourceid><addsrcrecordid>eNqFkUFvEzEQhVcIREvhzAmwOIA4bDu2d9f2BamKClRqRdWmZ8vr2I0jr53am4j-exwSNcABTpZmvnnjea-qXmM4xsDoyTKofAwCWgCCoXtSHWIQuO4aAU-rw1JkNW9Ic1C9yHkBAKLl8Lw6wIILxgg_rOKpHt1ajS4GFC2aXl9NMOof0M30_BIjF9DZdX11iQanU5zFQbmQS3Ud_dpklIw3KpvN4Dg3SM9VCMYjm-KA3JhR1sra6GdIq7WJ3oUav6yeWeWzebV7j6rbL2fTybf64vvX88npRa07gseaCtbRnlPRWeibHoPu297OLLS6aYlhAthMc9YqTJRpaN8JS6ntbceEwYQxelR93uouV_1gZtqEMSkvl8kNKj3IqJz8sxPcXN7FtSSMt0R0ReDjTiDF-5XJoxxc1sZ7FUxcZcloU9wlAIX88E-SYNIAB1HA93-Bi7hKodggCeAG847SAp1soWJ4zsnYxz9jkJvM5SZzuc-8TLz9_dQ9vwu5AGgHbCb3cp1sWNkMfGPXp_8g0q68H82PsbBvtuwijzE9wqRtBaW_1r3b9q2KUt0ll-XtTTmQAmbACcf0J71Q0hw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201418633</pqid></control><display><type>article</type><title>Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Pani, Biswaranjan ; Ong, Hwei Ling ; Brazer, So-ching W ; Liu, Xibao ; Rauser, Kristina ; Singh, Brij B ; Ambudkar, Indu S</creator><creatorcontrib>Pani, Biswaranjan ; Ong, Hwei Ling ; Brazer, So-ching W ; Liu, Xibao ; Rauser, Kristina ; Singh, Brij B ; Ambudkar, Indu S</creatorcontrib><description>Store-operated Ca²⁺ entry (SOCE) is activated by redistribution of STIM1 into puncta in discrete ER-plasma membrane junctional regions where it interacts with and activates store-operated channels (SOCs). The factors involved in precise targeting of the channels and their retention at these specific microdomains are not yet defined. Here we report that caveolin-1 (Cav1) is a critical plasma membrane scaffold that retains TRPC1 within the regions where STIM1 puncta are localized following store depletion. This enables the interaction of TRPC1 with STIM1 that is required for the activation of TRPC1-SOCE. Silencing Cav1 in human submandibular gland (HSG) cells decreased plasma membrane retention of TRPC1, TRPC1-STIM1 clustering, and consequently reduced TRPC1-SOCE, without altering STIM1 puncta. Importantly, activation of TRPC1-SOCE was associated with an increase in TRPC1-STIM1 and a decrease in TRPC1-Cav1 clustering. Consistent with this, overexpression of Cav1 decreased TRPC1-STIM1 clustering and SOCE, both of which were recovered when STIM1 was expressed at higher levels relative to Cav1. Silencing STIM1 or expression of ΔERM-STIM1 or STIM1(⁶⁸⁴EE⁶⁸⁵) mutant prevented dissociation of TRPC1-Cav1 and activation of TRPC1-SOCE. However expression of TRPC1-(⁶³⁹KK⁶⁴⁰) with STIM1(⁶⁸⁴EE⁶⁸⁵) restored function and the dissociation of TRPC1 from Cav1 in response to store depletion. Further, conditions that promoted TRPC1-STIM1 clustering and TRPC1-SOCE elicited corresponding changes in SOCE-dependent NFkB activation and cell proliferation. Together these data demonstrate that Cav1 is a critical plasma membrane scaffold for inactive TRPC1. We suggest that activation of TRPC1-SOC by STIM1 mediates release of the channel from Cav1.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0905002106</identifier><identifier>PMID: 19897728</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Calcium ; Calcium - metabolism ; Caveolin 1 - genetics ; Caveolin 1 - metabolism ; Cell growth ; Cell Line ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cell membranes ; Cell Proliferation ; Cellular immunity ; Endoplasmic Reticulum - metabolism ; Endothelial cells ; Humans ; Immunoprecipitation ; Lipids ; Membrane Microdomains - metabolism ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Membranes ; Mutation ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; NF-kappa B - metabolism ; Physiological regulation ; Plasma ; Plasma interactions ; Protein folding ; Proteins ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Scaffolds ; Stromal Interaction Molecule 1 ; TRPC Cation Channels - genetics ; TRPC Cation Channels - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-11, Vol.106 (47), p.20087-20092</ispartof><rights>Copyright National Academy of Sciences Nov 24, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c621t-39763b8396f0b4b10cb5bfdf05c452e7907dc875a12ae43b69f33fbf679e12773</citedby><cites>FETCH-LOGICAL-c621t-39763b8396f0b4b10cb5bfdf05c452e7907dc875a12ae43b69f33fbf679e12773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/47.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25593328$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25593328$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19897728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pani, Biswaranjan</creatorcontrib><creatorcontrib>Ong, Hwei Ling</creatorcontrib><creatorcontrib>Brazer, So-ching W</creatorcontrib><creatorcontrib>Liu, Xibao</creatorcontrib><creatorcontrib>Rauser, Kristina</creatorcontrib><creatorcontrib>Singh, Brij B</creatorcontrib><creatorcontrib>Ambudkar, Indu S</creatorcontrib><title>Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Store-operated Ca²⁺ entry (SOCE) is activated by redistribution of STIM1 into puncta in discrete ER-plasma membrane junctional regions where it interacts with and activates store-operated channels (SOCs). The factors involved in precise targeting of the channels and their retention at these specific microdomains are not yet defined. Here we report that caveolin-1 (Cav1) is a critical plasma membrane scaffold that retains TRPC1 within the regions where STIM1 puncta are localized following store depletion. This enables the interaction of TRPC1 with STIM1 that is required for the activation of TRPC1-SOCE. Silencing Cav1 in human submandibular gland (HSG) cells decreased plasma membrane retention of TRPC1, TRPC1-STIM1 clustering, and consequently reduced TRPC1-SOCE, without altering STIM1 puncta. Importantly, activation of TRPC1-SOCE was associated with an increase in TRPC1-STIM1 and a decrease in TRPC1-Cav1 clustering. Consistent with this, overexpression of Cav1 decreased TRPC1-STIM1 clustering and SOCE, both of which were recovered when STIM1 was expressed at higher levels relative to Cav1. Silencing STIM1 or expression of ΔERM-STIM1 or STIM1(⁶⁸⁴EE⁶⁸⁵) mutant prevented dissociation of TRPC1-Cav1 and activation of TRPC1-SOCE. However expression of TRPC1-(⁶³⁹KK⁶⁴⁰) with STIM1(⁶⁸⁴EE⁶⁸⁵) restored function and the dissociation of TRPC1 from Cav1 in response to store depletion. Further, conditions that promoted TRPC1-STIM1 clustering and TRPC1-SOCE elicited corresponding changes in SOCE-dependent NFkB activation and cell proliferation. Together these data demonstrate that Cav1 is a critical plasma membrane scaffold for inactive TRPC1. We suggest that activation of TRPC1-SOC by STIM1 mediates release of the channel from Cav1.</description><subject>Biological Sciences</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Caveolin 1 - genetics</subject><subject>Caveolin 1 - metabolism</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Cell Proliferation</subject><subject>Cellular immunity</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endothelial cells</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Lipids</subject><subject>Membrane Microdomains - metabolism</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Mutation</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>NF-kappa B - metabolism</subject><subject>Physiological regulation</subject><subject>Plasma</subject><subject>Plasma interactions</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Scaffolds</subject><subject>Stromal Interaction Molecule 1</subject><subject>TRPC Cation Channels - genetics</subject><subject>TRPC Cation Channels - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFvEzEQhVcIREvhzAmwOIA4bDu2d9f2BamKClRqRdWmZ8vr2I0jr53am4j-exwSNcABTpZmvnnjea-qXmM4xsDoyTKofAwCWgCCoXtSHWIQuO4aAU-rw1JkNW9Ic1C9yHkBAKLl8Lw6wIILxgg_rOKpHt1ajS4GFC2aXl9NMOof0M30_BIjF9DZdX11iQanU5zFQbmQS3Ud_dpklIw3KpvN4Dg3SM9VCMYjm-KA3JhR1sra6GdIq7WJ3oUav6yeWeWzebV7j6rbL2fTybf64vvX88npRa07gseaCtbRnlPRWeibHoPu297OLLS6aYlhAthMc9YqTJRpaN8JS6ntbceEwYQxelR93uouV_1gZtqEMSkvl8kNKj3IqJz8sxPcXN7FtSSMt0R0ReDjTiDF-5XJoxxc1sZ7FUxcZcloU9wlAIX88E-SYNIAB1HA93-Bi7hKodggCeAG847SAp1soWJ4zsnYxz9jkJvM5SZzuc-8TLz9_dQ9vwu5AGgHbCb3cp1sWNkMfGPXp_8g0q68H82PsbBvtuwijzE9wqRtBaW_1r3b9q2KUt0ll-XtTTmQAmbACcf0J71Q0hw</recordid><startdate>20091124</startdate><enddate>20091124</enddate><creator>Pani, Biswaranjan</creator><creator>Ong, Hwei Ling</creator><creator>Brazer, So-ching W</creator><creator>Liu, Xibao</creator><creator>Rauser, Kristina</creator><creator>Singh, Brij B</creator><creator>Ambudkar, Indu S</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091124</creationdate><title>Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1</title><author>Pani, Biswaranjan ; Ong, Hwei Ling ; Brazer, So-ching W ; Liu, Xibao ; Rauser, Kristina ; Singh, Brij B ; Ambudkar, Indu S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621t-39763b8396f0b4b10cb5bfdf05c452e7907dc875a12ae43b69f33fbf679e12773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological Sciences</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Caveolin 1 - genetics</topic><topic>Caveolin 1 - metabolism</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Cell Proliferation</topic><topic>Cellular immunity</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endothelial cells</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Lipids</topic><topic>Membrane Microdomains - metabolism</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Mutation</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>NF-kappa B - metabolism</topic><topic>Physiological regulation</topic><topic>Plasma</topic><topic>Plasma interactions</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Scaffolds</topic><topic>Stromal Interaction Molecule 1</topic><topic>TRPC Cation Channels - genetics</topic><topic>TRPC Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pani, Biswaranjan</creatorcontrib><creatorcontrib>Ong, Hwei Ling</creatorcontrib><creatorcontrib>Brazer, So-ching W</creatorcontrib><creatorcontrib>Liu, Xibao</creatorcontrib><creatorcontrib>Rauser, Kristina</creatorcontrib><creatorcontrib>Singh, Brij B</creatorcontrib><creatorcontrib>Ambudkar, Indu S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pani, Biswaranjan</au><au>Ong, Hwei Ling</au><au>Brazer, So-ching W</au><au>Liu, Xibao</au><au>Rauser, Kristina</au><au>Singh, Brij B</au><au>Ambudkar, Indu S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-11-24</date><risdate>2009</risdate><volume>106</volume><issue>47</issue><spage>20087</spage><epage>20092</epage><pages>20087-20092</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Store-operated Ca²⁺ entry (SOCE) is activated by redistribution of STIM1 into puncta in discrete ER-plasma membrane junctional regions where it interacts with and activates store-operated channels (SOCs). The factors involved in precise targeting of the channels and their retention at these specific microdomains are not yet defined. Here we report that caveolin-1 (Cav1) is a critical plasma membrane scaffold that retains TRPC1 within the regions where STIM1 puncta are localized following store depletion. This enables the interaction of TRPC1 with STIM1 that is required for the activation of TRPC1-SOCE. Silencing Cav1 in human submandibular gland (HSG) cells decreased plasma membrane retention of TRPC1, TRPC1-STIM1 clustering, and consequently reduced TRPC1-SOCE, without altering STIM1 puncta. Importantly, activation of TRPC1-SOCE was associated with an increase in TRPC1-STIM1 and a decrease in TRPC1-Cav1 clustering. Consistent with this, overexpression of Cav1 decreased TRPC1-STIM1 clustering and SOCE, both of which were recovered when STIM1 was expressed at higher levels relative to Cav1. Silencing STIM1 or expression of ΔERM-STIM1 or STIM1(⁶⁸⁴EE⁶⁸⁵) mutant prevented dissociation of TRPC1-Cav1 and activation of TRPC1-SOCE. However expression of TRPC1-(⁶³⁹KK⁶⁴⁰) with STIM1(⁶⁸⁴EE⁶⁸⁵) restored function and the dissociation of TRPC1 from Cav1 in response to store depletion. Further, conditions that promoted TRPC1-STIM1 clustering and TRPC1-SOCE elicited corresponding changes in SOCE-dependent NFkB activation and cell proliferation. Together these data demonstrate that Cav1 is a critical plasma membrane scaffold for inactive TRPC1. We suggest that activation of TRPC1-SOC by STIM1 mediates release of the channel from Cav1.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19897728</pmid><doi>10.1073/pnas.0905002106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2009-11, Vol.106 (47), p.20087-20092
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_0905002106
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Calcium
Calcium - metabolism
Caveolin 1 - genetics
Caveolin 1 - metabolism
Cell growth
Cell Line
Cell Membrane - chemistry
Cell Membrane - metabolism
Cell membranes
Cell Proliferation
Cellular immunity
Endoplasmic Reticulum - metabolism
Endothelial cells
Humans
Immunoprecipitation
Lipids
Membrane Microdomains - metabolism
Membrane Proteins - genetics
Membrane Proteins - metabolism
Membranes
Mutation
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
NF-kappa B - metabolism
Physiological regulation
Plasma
Plasma interactions
Protein folding
Proteins
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
Scaffolds
Stromal Interaction Molecule 1
TRPC Cation Channels - genetics
TRPC Cation Channels - metabolism
title Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20TRPC1%20by%20STIM1%20in%20ER-PM%20microdomains%20involves%20release%20of%20the%20channel%20from%20its%20scaffold%20caveolin-1&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pani,%20Biswaranjan&rft.date=2009-11-24&rft.volume=106&rft.issue=47&rft.spage=20087&rft.epage=20092&rft.pages=20087-20092&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0905002106&rft_dat=%3Cjstor_cross%3E25593328%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201418633&rft_id=info:pmid/19897728&rft_jstor_id=25593328&rfr_iscdi=true