crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface

The glycodepsipeptide antibiotic ramoplanin A2 is in late stage clinical development for the treatment of infections from Gram-positive pathogens, especially those that are resistant to first line antibiotics such as vancomycin. Ramoplanin A2 achieves its antibacterial effects by interfering with pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2009-08, Vol.106 (33), p.13759-13764
Hauptverfasser: Hamburger, James B, Hoertz, Amanda J, Lee, Amy, Senturia, Rachel J, McCafferty, Dewey G, Loll, Patrick J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13764
container_issue 33
container_start_page 13759
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 106
creator Hamburger, James B
Hoertz, Amanda J
Lee, Amy
Senturia, Rachel J
McCafferty, Dewey G
Loll, Patrick J
description The glycodepsipeptide antibiotic ramoplanin A2 is in late stage clinical development for the treatment of infections from Gram-positive pathogens, especially those that are resistant to first line antibiotics such as vancomycin. Ramoplanin A2 achieves its antibacterial effects by interfering with production of the bacterial cell wall; it indirectly inhibits the transglycosylases responsible for peptidoglycan biosynthesis by sequestering their Lipid II substrate. Lipid II recognition and sequestration occur at the interface between the extracellular environment and the bacterial membrane. Therefore, we determined the structure of ramoplanin A2 in an amphipathic environment, using detergents as membrane mimetics, to provide the most physiologically relevant structural context for mechanistic and pharmacological studies. We report here the X-ray crystal structure of ramoplanin A2 at a resolution of 1.4 Å. This structure reveals that ramoplanin A2 forms an intimate and highly amphipathic dimer and illustrates the potential means by which it interacts with bacterial target membranes. The structure also suggests a mechanism by which ramoplanin A2 recognizes its Lipid II ligand.
doi_str_mv 10.1073/pnas.0904686106
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0904686106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40484314</jstor_id><sourcerecordid>40484314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-c8f71cf15543714f92276d9cfe6fb677c15842d3cb67b959032e9b1fd5e008643</originalsourceid><addsrcrecordid>eNqFkk2P0zAQhiMEYsvCmRNgOCBx6O44cez4goRWfFSqxAH2bLmO3bokcdZ2EPsD-N9M1GoLXPZkW_O873x4iuI5hQsKorocB50uQALjDafAHxQLCpIuOZPwsFgAlGLZsJKdFU9S2gOArBt4XJxRyTmvpVgUv028TVl3JOU4mTxFS4IjmrS-t3G-5p0lesh-40P2hkTdh7HTgx-I77oJVTrbRHrbb6IeLBlD8tkHjG9R1qLTGLJFPaZY-9G3ZLUibTA_ZsAP2UanjX1aPHK6S_bZ8Twvrj99_H71Zbn--nl19WG9NFh3XprGCWocrWtWCcqcLEvBW2mc5W7DhTC0xm7byuBjI2sJVWnlhrq2tgANZ9V58f7gO06b3rYGC4u6U2P0vY63Kmiv_o0Mfqe24acqRdlILtDg9cEgpOxVMj5bszNhGKzJSgopxZzk7TFJDDeTTVn1Phnb4dRsmJLigkOD33UvWEIDogGJ4Jv_wH2Y4oCTQoYyysqyRujyAJkYUorW3bVFQc3LouZlUadlQcXLv6dx4o_bgQA5ArPyZMdVVSlaiXou7d09iHJT12X7KyP74sDuUw7xDmbAGlbReXCvDnGng9Lb6JO6_oYNVkA5l4DQH_og6Hg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201414225</pqid></control><display><type>article</type><title>crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface</title><source>JSTOR Archive Collection A-Z Listing</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hamburger, James B ; Hoertz, Amanda J ; Lee, Amy ; Senturia, Rachel J ; McCafferty, Dewey G ; Loll, Patrick J</creator><creatorcontrib>Hamburger, James B ; Hoertz, Amanda J ; Lee, Amy ; Senturia, Rachel J ; McCafferty, Dewey G ; Loll, Patrick J ; Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><description>The glycodepsipeptide antibiotic ramoplanin A2 is in late stage clinical development for the treatment of infections from Gram-positive pathogens, especially those that are resistant to first line antibiotics such as vancomycin. Ramoplanin A2 achieves its antibacterial effects by interfering with production of the bacterial cell wall; it indirectly inhibits the transglycosylases responsible for peptidoglycan biosynthesis by sequestering their Lipid II substrate. Lipid II recognition and sequestration occur at the interface between the extracellular environment and the bacterial membrane. Therefore, we determined the structure of ramoplanin A2 in an amphipathic environment, using detergents as membrane mimetics, to provide the most physiologically relevant structural context for mechanistic and pharmacological studies. We report here the X-ray crystal structure of ramoplanin A2 at a resolution of 1.4 Å. This structure reveals that ramoplanin A2 forms an intimate and highly amphipathic dimer and illustrates the potential means by which it interacts with bacterial target membranes. The structure also suggests a mechanism by which ramoplanin A2 recognizes its Lipid II ligand.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0904686106</identifier><identifier>PMID: 19666597</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; ANTIBIOTICS ; BASIC BIOLOGICAL SCIENCES ; Biological Sciences ; BIOSYNTHESIS ; Cell Membrane - drug effects ; CELL WALL ; Cell walls ; CRYSTAL STRUCTURE ; Crystallography, X-Ray - methods ; Crystals ; Depsipeptides - chemistry ; Depsipeptides - pharmacology ; DETERGENTS ; Developmental stages ; Dimerization ; DIMERS ; Diphosphates ; Drug Resistance, Bacterial ; ENVIRONMENT ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Gram-positive bacteria ; Gram-Positive Bacteria - metabolism ; Infection ; Infections ; INTERFACES ; Ionizing radiation ; Ligands ; LIPIDS ; Lipids - chemistry ; MATERIALS SCIENCE ; MEMBRANES ; Microbial Sensitivity Tests ; Models, Chemical ; Molecular Conformation ; Molecules ; Monomers ; national synchrotron light source ; PATHOGENS ; Peptides ; Peptides - chemistry ; peptidoglycans ; POSITIONING ; POTENTIALS ; PRODUCTION ; Protein Binding ; RESOLUTION ; TARGETS ; Vancomycin</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-08, Vol.106 (33), p.13759-13764</ispartof><rights>Copyright National Academy of Sciences Aug 18, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-c8f71cf15543714f92276d9cfe6fb677c15842d3cb67b959032e9b1fd5e008643</citedby><cites>FETCH-LOGICAL-c580t-c8f71cf15543714f92276d9cfe6fb677c15842d3cb67b959032e9b1fd5e008643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40484314$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40484314$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19666597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/979974$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamburger, James B</creatorcontrib><creatorcontrib>Hoertz, Amanda J</creatorcontrib><creatorcontrib>Lee, Amy</creatorcontrib><creatorcontrib>Senturia, Rachel J</creatorcontrib><creatorcontrib>McCafferty, Dewey G</creatorcontrib><creatorcontrib>Loll, Patrick J</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><title>crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The glycodepsipeptide antibiotic ramoplanin A2 is in late stage clinical development for the treatment of infections from Gram-positive pathogens, especially those that are resistant to first line antibiotics such as vancomycin. Ramoplanin A2 achieves its antibacterial effects by interfering with production of the bacterial cell wall; it indirectly inhibits the transglycosylases responsible for peptidoglycan biosynthesis by sequestering their Lipid II substrate. Lipid II recognition and sequestration occur at the interface between the extracellular environment and the bacterial membrane. Therefore, we determined the structure of ramoplanin A2 in an amphipathic environment, using detergents as membrane mimetics, to provide the most physiologically relevant structural context for mechanistic and pharmacological studies. We report here the X-ray crystal structure of ramoplanin A2 at a resolution of 1.4 Å. This structure reveals that ramoplanin A2 forms an intimate and highly amphipathic dimer and illustrates the potential means by which it interacts with bacterial target membranes. The structure also suggests a mechanism by which ramoplanin A2 recognizes its Lipid II ligand.</description><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>ANTIBIOTICS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological Sciences</subject><subject>BIOSYNTHESIS</subject><subject>Cell Membrane - drug effects</subject><subject>CELL WALL</subject><subject>Cell walls</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray - methods</subject><subject>Crystals</subject><subject>Depsipeptides - chemistry</subject><subject>Depsipeptides - pharmacology</subject><subject>DETERGENTS</subject><subject>Developmental stages</subject><subject>Dimerization</subject><subject>DIMERS</subject><subject>Diphosphates</subject><subject>Drug Resistance, Bacterial</subject><subject>ENVIRONMENT</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Gram-positive bacteria</subject><subject>Gram-Positive Bacteria - metabolism</subject><subject>Infection</subject><subject>Infections</subject><subject>INTERFACES</subject><subject>Ionizing radiation</subject><subject>Ligands</subject><subject>LIPIDS</subject><subject>Lipids - chemistry</subject><subject>MATERIALS SCIENCE</subject><subject>MEMBRANES</subject><subject>Microbial Sensitivity Tests</subject><subject>Models, Chemical</subject><subject>Molecular Conformation</subject><subject>Molecules</subject><subject>Monomers</subject><subject>national synchrotron light source</subject><subject>PATHOGENS</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>peptidoglycans</subject><subject>POSITIONING</subject><subject>POTENTIALS</subject><subject>PRODUCTION</subject><subject>Protein Binding</subject><subject>RESOLUTION</subject><subject>TARGETS</subject><subject>Vancomycin</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk2P0zAQhiMEYsvCmRNgOCBx6O44cez4goRWfFSqxAH2bLmO3bokcdZ2EPsD-N9M1GoLXPZkW_O873x4iuI5hQsKorocB50uQALjDafAHxQLCpIuOZPwsFgAlGLZsJKdFU9S2gOArBt4XJxRyTmvpVgUv028TVl3JOU4mTxFS4IjmrS-t3G-5p0lesh-40P2hkTdh7HTgx-I77oJVTrbRHrbb6IeLBlD8tkHjG9R1qLTGLJFPaZY-9G3ZLUibTA_ZsAP2UanjX1aPHK6S_bZ8Twvrj99_H71Zbn--nl19WG9NFh3XprGCWocrWtWCcqcLEvBW2mc5W7DhTC0xm7byuBjI2sJVWnlhrq2tgANZ9V58f7gO06b3rYGC4u6U2P0vY63Kmiv_o0Mfqe24acqRdlILtDg9cEgpOxVMj5bszNhGKzJSgopxZzk7TFJDDeTTVn1Phnb4dRsmJLigkOD33UvWEIDogGJ4Jv_wH2Y4oCTQoYyysqyRujyAJkYUorW3bVFQc3LouZlUadlQcXLv6dx4o_bgQA5ArPyZMdVVSlaiXou7d09iHJT12X7KyP74sDuUw7xDmbAGlbReXCvDnGng9Lb6JO6_oYNVkA5l4DQH_og6Hg</recordid><startdate>20090818</startdate><enddate>20090818</enddate><creator>Hamburger, James B</creator><creator>Hoertz, Amanda J</creator><creator>Lee, Amy</creator><creator>Senturia, Rachel J</creator><creator>McCafferty, Dewey G</creator><creator>Loll, Patrick J</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7T7</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20090818</creationdate><title>crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface</title><author>Hamburger, James B ; Hoertz, Amanda J ; Lee, Amy ; Senturia, Rachel J ; McCafferty, Dewey G ; Loll, Patrick J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-c8f71cf15543714f92276d9cfe6fb677c15842d3cb67b959032e9b1fd5e008643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>ANTIBIOTICS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological Sciences</topic><topic>BIOSYNTHESIS</topic><topic>Cell Membrane - drug effects</topic><topic>CELL WALL</topic><topic>Cell walls</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray - methods</topic><topic>Crystals</topic><topic>Depsipeptides - chemistry</topic><topic>Depsipeptides - pharmacology</topic><topic>DETERGENTS</topic><topic>Developmental stages</topic><topic>Dimerization</topic><topic>DIMERS</topic><topic>Diphosphates</topic><topic>Drug Resistance, Bacterial</topic><topic>ENVIRONMENT</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Gram-positive bacteria</topic><topic>Gram-Positive Bacteria - metabolism</topic><topic>Infection</topic><topic>Infections</topic><topic>INTERFACES</topic><topic>Ionizing radiation</topic><topic>Ligands</topic><topic>LIPIDS</topic><topic>Lipids - chemistry</topic><topic>MATERIALS SCIENCE</topic><topic>MEMBRANES</topic><topic>Microbial Sensitivity Tests</topic><topic>Models, Chemical</topic><topic>Molecular Conformation</topic><topic>Molecules</topic><topic>Monomers</topic><topic>national synchrotron light source</topic><topic>PATHOGENS</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>peptidoglycans</topic><topic>POSITIONING</topic><topic>POTENTIALS</topic><topic>PRODUCTION</topic><topic>Protein Binding</topic><topic>RESOLUTION</topic><topic>TARGETS</topic><topic>Vancomycin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamburger, James B</creatorcontrib><creatorcontrib>Hoertz, Amanda J</creatorcontrib><creatorcontrib>Lee, Amy</creatorcontrib><creatorcontrib>Senturia, Rachel J</creatorcontrib><creatorcontrib>McCafferty, Dewey G</creatorcontrib><creatorcontrib>Loll, Patrick J</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamburger, James B</au><au>Hoertz, Amanda J</au><au>Lee, Amy</au><au>Senturia, Rachel J</au><au>McCafferty, Dewey G</au><au>Loll, Patrick J</au><aucorp>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-08-18</date><risdate>2009</risdate><volume>106</volume><issue>33</issue><spage>13759</spage><epage>13764</epage><pages>13759-13764</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The glycodepsipeptide antibiotic ramoplanin A2 is in late stage clinical development for the treatment of infections from Gram-positive pathogens, especially those that are resistant to first line antibiotics such as vancomycin. Ramoplanin A2 achieves its antibacterial effects by interfering with production of the bacterial cell wall; it indirectly inhibits the transglycosylases responsible for peptidoglycan biosynthesis by sequestering their Lipid II substrate. Lipid II recognition and sequestration occur at the interface between the extracellular environment and the bacterial membrane. Therefore, we determined the structure of ramoplanin A2 in an amphipathic environment, using detergents as membrane mimetics, to provide the most physiologically relevant structural context for mechanistic and pharmacological studies. We report here the X-ray crystal structure of ramoplanin A2 at a resolution of 1.4 Å. This structure reveals that ramoplanin A2 forms an intimate and highly amphipathic dimer and illustrates the potential means by which it interacts with bacterial target membranes. The structure also suggests a mechanism by which ramoplanin A2 recognizes its Lipid II ligand.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19666597</pmid><doi>10.1073/pnas.0904686106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2009-08, Vol.106 (33), p.13759-13764
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_0904686106
source JSTOR Archive Collection A-Z Listing; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
ANTIBIOTICS
BASIC BIOLOGICAL SCIENCES
Biological Sciences
BIOSYNTHESIS
Cell Membrane - drug effects
CELL WALL
Cell walls
CRYSTAL STRUCTURE
Crystallography, X-Ray - methods
Crystals
Depsipeptides - chemistry
Depsipeptides - pharmacology
DETERGENTS
Developmental stages
Dimerization
DIMERS
Diphosphates
Drug Resistance, Bacterial
ENVIRONMENT
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
Gram-positive bacteria
Gram-Positive Bacteria - metabolism
Infection
Infections
INTERFACES
Ionizing radiation
Ligands
LIPIDS
Lipids - chemistry
MATERIALS SCIENCE
MEMBRANES
Microbial Sensitivity Tests
Models, Chemical
Molecular Conformation
Molecules
Monomers
national synchrotron light source
PATHOGENS
Peptides
Peptides - chemistry
peptidoglycans
POSITIONING
POTENTIALS
PRODUCTION
Protein Binding
RESOLUTION
TARGETS
Vancomycin
title crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=crystal%20structure%20of%20a%20dimer%20of%20the%20antibiotic%20ramoplanin%20illustrates%20membrane%20positioning%20and%20a%20potential%20Lipid%20II%20docking%20interface&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hamburger,%20James%20B&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20National%20Synchrotron%20Light%20Source&rft.date=2009-08-18&rft.volume=106&rft.issue=33&rft.spage=13759&rft.epage=13764&rft.pages=13759-13764&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0904686106&rft_dat=%3Cjstor_cross%3E40484314%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201414225&rft_id=info:pmid/19666597&rft_jstor_id=40484314&rfr_iscdi=true