crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface
The glycodepsipeptide antibiotic ramoplanin A2 is in late stage clinical development for the treatment of infections from Gram-positive pathogens, especially those that are resistant to first line antibiotics such as vancomycin. Ramoplanin A2 achieves its antibacterial effects by interfering with pr...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-08, Vol.106 (33), p.13759-13764 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13764 |
---|---|
container_issue | 33 |
container_start_page | 13759 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 106 |
creator | Hamburger, James B Hoertz, Amanda J Lee, Amy Senturia, Rachel J McCafferty, Dewey G Loll, Patrick J |
description | The glycodepsipeptide antibiotic ramoplanin A2 is in late stage clinical development for the treatment of infections from Gram-positive pathogens, especially those that are resistant to first line antibiotics such as vancomycin. Ramoplanin A2 achieves its antibacterial effects by interfering with production of the bacterial cell wall; it indirectly inhibits the transglycosylases responsible for peptidoglycan biosynthesis by sequestering their Lipid II substrate. Lipid II recognition and sequestration occur at the interface between the extracellular environment and the bacterial membrane. Therefore, we determined the structure of ramoplanin A2 in an amphipathic environment, using detergents as membrane mimetics, to provide the most physiologically relevant structural context for mechanistic and pharmacological studies. We report here the X-ray crystal structure of ramoplanin A2 at a resolution of 1.4 Å. This structure reveals that ramoplanin A2 forms an intimate and highly amphipathic dimer and illustrates the potential means by which it interacts with bacterial target membranes. The structure also suggests a mechanism by which ramoplanin A2 recognizes its Lipid II ligand. |
doi_str_mv | 10.1073/pnas.0904686106 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0904686106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40484314</jstor_id><sourcerecordid>40484314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-c8f71cf15543714f92276d9cfe6fb677c15842d3cb67b959032e9b1fd5e008643</originalsourceid><addsrcrecordid>eNqFkk2P0zAQhiMEYsvCmRNgOCBx6O44cez4goRWfFSqxAH2bLmO3bokcdZ2EPsD-N9M1GoLXPZkW_O873x4iuI5hQsKorocB50uQALjDafAHxQLCpIuOZPwsFgAlGLZsJKdFU9S2gOArBt4XJxRyTmvpVgUv028TVl3JOU4mTxFS4IjmrS-t3G-5p0lesh-40P2hkTdh7HTgx-I77oJVTrbRHrbb6IeLBlD8tkHjG9R1qLTGLJFPaZY-9G3ZLUibTA_ZsAP2UanjX1aPHK6S_bZ8Twvrj99_H71Zbn--nl19WG9NFh3XprGCWocrWtWCcqcLEvBW2mc5W7DhTC0xm7byuBjI2sJVWnlhrq2tgANZ9V58f7gO06b3rYGC4u6U2P0vY63Kmiv_o0Mfqe24acqRdlILtDg9cEgpOxVMj5bszNhGKzJSgopxZzk7TFJDDeTTVn1Phnb4dRsmJLigkOD33UvWEIDogGJ4Jv_wH2Y4oCTQoYyysqyRujyAJkYUorW3bVFQc3LouZlUadlQcXLv6dx4o_bgQA5ArPyZMdVVSlaiXou7d09iHJT12X7KyP74sDuUw7xDmbAGlbReXCvDnGng9Lb6JO6_oYNVkA5l4DQH_og6Hg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201414225</pqid></control><display><type>article</type><title>crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface</title><source>JSTOR Archive Collection A-Z Listing</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hamburger, James B ; Hoertz, Amanda J ; Lee, Amy ; Senturia, Rachel J ; McCafferty, Dewey G ; Loll, Patrick J</creator><creatorcontrib>Hamburger, James B ; Hoertz, Amanda J ; Lee, Amy ; Senturia, Rachel J ; McCafferty, Dewey G ; Loll, Patrick J ; Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><description>The glycodepsipeptide antibiotic ramoplanin A2 is in late stage clinical development for the treatment of infections from Gram-positive pathogens, especially those that are resistant to first line antibiotics such as vancomycin. Ramoplanin A2 achieves its antibacterial effects by interfering with production of the bacterial cell wall; it indirectly inhibits the transglycosylases responsible for peptidoglycan biosynthesis by sequestering their Lipid II substrate. Lipid II recognition and sequestration occur at the interface between the extracellular environment and the bacterial membrane. Therefore, we determined the structure of ramoplanin A2 in an amphipathic environment, using detergents as membrane mimetics, to provide the most physiologically relevant structural context for mechanistic and pharmacological studies. We report here the X-ray crystal structure of ramoplanin A2 at a resolution of 1.4 Å. This structure reveals that ramoplanin A2 forms an intimate and highly amphipathic dimer and illustrates the potential means by which it interacts with bacterial target membranes. The structure also suggests a mechanism by which ramoplanin A2 recognizes its Lipid II ligand.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0904686106</identifier><identifier>PMID: 19666597</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; ANTIBIOTICS ; BASIC BIOLOGICAL SCIENCES ; Biological Sciences ; BIOSYNTHESIS ; Cell Membrane - drug effects ; CELL WALL ; Cell walls ; CRYSTAL STRUCTURE ; Crystallography, X-Ray - methods ; Crystals ; Depsipeptides - chemistry ; Depsipeptides - pharmacology ; DETERGENTS ; Developmental stages ; Dimerization ; DIMERS ; Diphosphates ; Drug Resistance, Bacterial ; ENVIRONMENT ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Gram-positive bacteria ; Gram-Positive Bacteria - metabolism ; Infection ; Infections ; INTERFACES ; Ionizing radiation ; Ligands ; LIPIDS ; Lipids - chemistry ; MATERIALS SCIENCE ; MEMBRANES ; Microbial Sensitivity Tests ; Models, Chemical ; Molecular Conformation ; Molecules ; Monomers ; national synchrotron light source ; PATHOGENS ; Peptides ; Peptides - chemistry ; peptidoglycans ; POSITIONING ; POTENTIALS ; PRODUCTION ; Protein Binding ; RESOLUTION ; TARGETS ; Vancomycin</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-08, Vol.106 (33), p.13759-13764</ispartof><rights>Copyright National Academy of Sciences Aug 18, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-c8f71cf15543714f92276d9cfe6fb677c15842d3cb67b959032e9b1fd5e008643</citedby><cites>FETCH-LOGICAL-c580t-c8f71cf15543714f92276d9cfe6fb677c15842d3cb67b959032e9b1fd5e008643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40484314$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40484314$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19666597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/979974$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamburger, James B</creatorcontrib><creatorcontrib>Hoertz, Amanda J</creatorcontrib><creatorcontrib>Lee, Amy</creatorcontrib><creatorcontrib>Senturia, Rachel J</creatorcontrib><creatorcontrib>McCafferty, Dewey G</creatorcontrib><creatorcontrib>Loll, Patrick J</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><title>crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The glycodepsipeptide antibiotic ramoplanin A2 is in late stage clinical development for the treatment of infections from Gram-positive pathogens, especially those that are resistant to first line antibiotics such as vancomycin. Ramoplanin A2 achieves its antibacterial effects by interfering with production of the bacterial cell wall; it indirectly inhibits the transglycosylases responsible for peptidoglycan biosynthesis by sequestering their Lipid II substrate. Lipid II recognition and sequestration occur at the interface between the extracellular environment and the bacterial membrane. Therefore, we determined the structure of ramoplanin A2 in an amphipathic environment, using detergents as membrane mimetics, to provide the most physiologically relevant structural context for mechanistic and pharmacological studies. We report here the X-ray crystal structure of ramoplanin A2 at a resolution of 1.4 Å. This structure reveals that ramoplanin A2 forms an intimate and highly amphipathic dimer and illustrates the potential means by which it interacts with bacterial target membranes. The structure also suggests a mechanism by which ramoplanin A2 recognizes its Lipid II ligand.</description><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>ANTIBIOTICS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological Sciences</subject><subject>BIOSYNTHESIS</subject><subject>Cell Membrane - drug effects</subject><subject>CELL WALL</subject><subject>Cell walls</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray - methods</subject><subject>Crystals</subject><subject>Depsipeptides - chemistry</subject><subject>Depsipeptides - pharmacology</subject><subject>DETERGENTS</subject><subject>Developmental stages</subject><subject>Dimerization</subject><subject>DIMERS</subject><subject>Diphosphates</subject><subject>Drug Resistance, Bacterial</subject><subject>ENVIRONMENT</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Gram-positive bacteria</subject><subject>Gram-Positive Bacteria - metabolism</subject><subject>Infection</subject><subject>Infections</subject><subject>INTERFACES</subject><subject>Ionizing radiation</subject><subject>Ligands</subject><subject>LIPIDS</subject><subject>Lipids - chemistry</subject><subject>MATERIALS SCIENCE</subject><subject>MEMBRANES</subject><subject>Microbial Sensitivity Tests</subject><subject>Models, Chemical</subject><subject>Molecular Conformation</subject><subject>Molecules</subject><subject>Monomers</subject><subject>national synchrotron light source</subject><subject>PATHOGENS</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>peptidoglycans</subject><subject>POSITIONING</subject><subject>POTENTIALS</subject><subject>PRODUCTION</subject><subject>Protein Binding</subject><subject>RESOLUTION</subject><subject>TARGETS</subject><subject>Vancomycin</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk2P0zAQhiMEYsvCmRNgOCBx6O44cez4goRWfFSqxAH2bLmO3bokcdZ2EPsD-N9M1GoLXPZkW_O873x4iuI5hQsKorocB50uQALjDafAHxQLCpIuOZPwsFgAlGLZsJKdFU9S2gOArBt4XJxRyTmvpVgUv028TVl3JOU4mTxFS4IjmrS-t3G-5p0lesh-40P2hkTdh7HTgx-I77oJVTrbRHrbb6IeLBlD8tkHjG9R1qLTGLJFPaZY-9G3ZLUibTA_ZsAP2UanjX1aPHK6S_bZ8Twvrj99_H71Zbn--nl19WG9NFh3XprGCWocrWtWCcqcLEvBW2mc5W7DhTC0xm7byuBjI2sJVWnlhrq2tgANZ9V58f7gO06b3rYGC4u6U2P0vY63Kmiv_o0Mfqe24acqRdlILtDg9cEgpOxVMj5bszNhGKzJSgopxZzk7TFJDDeTTVn1Phnb4dRsmJLigkOD33UvWEIDogGJ4Jv_wH2Y4oCTQoYyysqyRujyAJkYUorW3bVFQc3LouZlUadlQcXLv6dx4o_bgQA5ArPyZMdVVSlaiXou7d09iHJT12X7KyP74sDuUw7xDmbAGlbReXCvDnGng9Lb6JO6_oYNVkA5l4DQH_og6Hg</recordid><startdate>20090818</startdate><enddate>20090818</enddate><creator>Hamburger, James B</creator><creator>Hoertz, Amanda J</creator><creator>Lee, Amy</creator><creator>Senturia, Rachel J</creator><creator>McCafferty, Dewey G</creator><creator>Loll, Patrick J</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7T7</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20090818</creationdate><title>crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface</title><author>Hamburger, James B ; Hoertz, Amanda J ; Lee, Amy ; Senturia, Rachel J ; McCafferty, Dewey G ; Loll, Patrick J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-c8f71cf15543714f92276d9cfe6fb677c15842d3cb67b959032e9b1fd5e008643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>ANTIBIOTICS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological Sciences</topic><topic>BIOSYNTHESIS</topic><topic>Cell Membrane - drug effects</topic><topic>CELL WALL</topic><topic>Cell walls</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray - methods</topic><topic>Crystals</topic><topic>Depsipeptides - chemistry</topic><topic>Depsipeptides - pharmacology</topic><topic>DETERGENTS</topic><topic>Developmental stages</topic><topic>Dimerization</topic><topic>DIMERS</topic><topic>Diphosphates</topic><topic>Drug Resistance, Bacterial</topic><topic>ENVIRONMENT</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Gram-positive bacteria</topic><topic>Gram-Positive Bacteria - metabolism</topic><topic>Infection</topic><topic>Infections</topic><topic>INTERFACES</topic><topic>Ionizing radiation</topic><topic>Ligands</topic><topic>LIPIDS</topic><topic>Lipids - chemistry</topic><topic>MATERIALS SCIENCE</topic><topic>MEMBRANES</topic><topic>Microbial Sensitivity Tests</topic><topic>Models, Chemical</topic><topic>Molecular Conformation</topic><topic>Molecules</topic><topic>Monomers</topic><topic>national synchrotron light source</topic><topic>PATHOGENS</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>peptidoglycans</topic><topic>POSITIONING</topic><topic>POTENTIALS</topic><topic>PRODUCTION</topic><topic>Protein Binding</topic><topic>RESOLUTION</topic><topic>TARGETS</topic><topic>Vancomycin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamburger, James B</creatorcontrib><creatorcontrib>Hoertz, Amanda J</creatorcontrib><creatorcontrib>Lee, Amy</creatorcontrib><creatorcontrib>Senturia, Rachel J</creatorcontrib><creatorcontrib>McCafferty, Dewey G</creatorcontrib><creatorcontrib>Loll, Patrick J</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamburger, James B</au><au>Hoertz, Amanda J</au><au>Lee, Amy</au><au>Senturia, Rachel J</au><au>McCafferty, Dewey G</au><au>Loll, Patrick J</au><aucorp>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-08-18</date><risdate>2009</risdate><volume>106</volume><issue>33</issue><spage>13759</spage><epage>13764</epage><pages>13759-13764</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The glycodepsipeptide antibiotic ramoplanin A2 is in late stage clinical development for the treatment of infections from Gram-positive pathogens, especially those that are resistant to first line antibiotics such as vancomycin. Ramoplanin A2 achieves its antibacterial effects by interfering with production of the bacterial cell wall; it indirectly inhibits the transglycosylases responsible for peptidoglycan biosynthesis by sequestering their Lipid II substrate. Lipid II recognition and sequestration occur at the interface between the extracellular environment and the bacterial membrane. Therefore, we determined the structure of ramoplanin A2 in an amphipathic environment, using detergents as membrane mimetics, to provide the most physiologically relevant structural context for mechanistic and pharmacological studies. We report here the X-ray crystal structure of ramoplanin A2 at a resolution of 1.4 Å. This structure reveals that ramoplanin A2 forms an intimate and highly amphipathic dimer and illustrates the potential means by which it interacts with bacterial target membranes. The structure also suggests a mechanism by which ramoplanin A2 recognizes its Lipid II ligand.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19666597</pmid><doi>10.1073/pnas.0904686106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2009-08, Vol.106 (33), p.13759-13764 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_0904686106 |
source | JSTOR Archive Collection A-Z Listing; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology ANTIBIOTICS BASIC BIOLOGICAL SCIENCES Biological Sciences BIOSYNTHESIS Cell Membrane - drug effects CELL WALL Cell walls CRYSTAL STRUCTURE Crystallography, X-Ray - methods Crystals Depsipeptides - chemistry Depsipeptides - pharmacology DETERGENTS Developmental stages Dimerization DIMERS Diphosphates Drug Resistance, Bacterial ENVIRONMENT GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE Gram-positive bacteria Gram-Positive Bacteria - metabolism Infection Infections INTERFACES Ionizing radiation Ligands LIPIDS Lipids - chemistry MATERIALS SCIENCE MEMBRANES Microbial Sensitivity Tests Models, Chemical Molecular Conformation Molecules Monomers national synchrotron light source PATHOGENS Peptides Peptides - chemistry peptidoglycans POSITIONING POTENTIALS PRODUCTION Protein Binding RESOLUTION TARGETS Vancomycin |
title | crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=crystal%20structure%20of%20a%20dimer%20of%20the%20antibiotic%20ramoplanin%20illustrates%20membrane%20positioning%20and%20a%20potential%20Lipid%20II%20docking%20interface&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hamburger,%20James%20B&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20National%20Synchrotron%20Light%20Source&rft.date=2009-08-18&rft.volume=106&rft.issue=33&rft.spage=13759&rft.epage=13764&rft.pages=13759-13764&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0904686106&rft_dat=%3Cjstor_cross%3E40484314%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201414225&rft_id=info:pmid/19666597&rft_jstor_id=40484314&rfr_iscdi=true |