Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors
Binding-induced biomolecular switches are used throughout nature and, increasingly, throughout biotechnology for the detection of chemical moieties and the subsequent transduction of this detection into useful outputs. Here we show that the thermodynamics of these switches are quantitatively describ...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-08, Vol.106 (33), p.13802-13807 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13807 |
---|---|
container_issue | 33 |
container_start_page | 13802 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 106 |
creator | Vallée-Bélisle, Alexis Ricci, Francesco Plaxco, Kevin W |
description | Binding-induced biomolecular switches are used throughout nature and, increasingly, throughout biotechnology for the detection of chemical moieties and the subsequent transduction of this detection into useful outputs. Here we show that the thermodynamics of these switches are quantitatively described by a simple 3-state population-shift model, in which the equilibrium between a nonbinding, nonsignaling state and the binding-competent, signaling state is shifted toward the latter upon target binding. Because of this, their performance is determined by the tradeoff inherent to their switching thermodynamics; while a switching equilibrium constant favoring the nonbinding, nonsignaling, conformation ensures a larger signal change (more molecules are poised to respond), it also reduces affinity (binding must overcome a more unfavorable conformational free energy). We then derive and employ the relationship between switching thermodynamics and switch signaling to rationally tune the dynamic range and detection limit of a representative structure-switching biosensor, a molecular beacon, over 4 orders of magnitude. These findings demonstrate that the performance of biomolecular switches can be rationally tuned via mutations that alter their switching thermodynamics and suggest a mechanism by which the performance of naturally occurring switches may have evolved. |
doi_str_mv | 10.1073/pnas.0904005106 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0904005106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40484322</jstor_id><sourcerecordid>40484322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-faad925ce7eb07cf7ad6501ed21d083810389d2785b1cd225480a198dcf22dd73</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEokvhzAmwOFTikHbsJP64IKGKAlIlDrRny2s7u14l9mI7QPnrcZRVF7j0NLLn955m5lXVSwznGFhzsfcqnYOAFqDDQB9VKwwC17QV8LhaARBW85a0J9WzlHYAIDoOT6sTLCgtDF1V-WZr4xjMnVej02itkkuoDxHlrUVhn93ofqvsgkehR2vnjfObupRJW1PeYQyD1dOgIko_XdZbm5DyBqUcJ52naOvlu6hmOlmfQkzPqye9GpJ9cain1e3Vx5vLz_X1109fLj9c15oSyHWvlBGk05bZNTDdM2VoB9gagg3whmNouDCE8W6NtSGkazkoLLjRPSHGsOa0er_47qf1aI22Pkc1yH10o4p3Mign_-14t5Wb8EMSRrhgXTE4OxjE8H2yKcvRJW2HQXkbpiQpo-XqnD4IEuAgGCYFfPsfuAtT9OUKhcFtCbXjBbpYIB1DStH29yNjkHPucs5dHnMvitd_b3rkD0EXAB2AWXm0o7JpJG44zKO9ewCR_TQM2f7KhX21sLuUQ7yHW2h525DZ683S71WQahNdkrffyoINYEoFCNL8AbxJ2B8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201410758</pqid></control><display><type>article</type><title>Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Vallée-Bélisle, Alexis ; Ricci, Francesco ; Plaxco, Kevin W</creator><creatorcontrib>Vallée-Bélisle, Alexis ; Ricci, Francesco ; Plaxco, Kevin W</creatorcontrib><description>Binding-induced biomolecular switches are used throughout nature and, increasingly, throughout biotechnology for the detection of chemical moieties and the subsequent transduction of this detection into useful outputs. Here we show that the thermodynamics of these switches are quantitatively described by a simple 3-state population-shift model, in which the equilibrium between a nonbinding, nonsignaling state and the binding-competent, signaling state is shifted toward the latter upon target binding. Because of this, their performance is determined by the tradeoff inherent to their switching thermodynamics; while a switching equilibrium constant favoring the nonbinding, nonsignaling, conformation ensures a larger signal change (more molecules are poised to respond), it also reduces affinity (binding must overcome a more unfavorable conformational free energy). We then derive and employ the relationship between switching thermodynamics and switch signaling to rationally tune the dynamic range and detection limit of a representative structure-switching biosensor, a molecular beacon, over 4 orders of magnitude. These findings demonstrate that the performance of biomolecular switches can be rationally tuned via mutations that alter their switching thermodynamics and suggest a mechanism by which the performance of naturally occurring switches may have evolved.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0904005106</identifier><identifier>PMID: 19666496</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Beacons ; Binding Sites ; Biological Sciences ; Biosensing Techniques ; Biosensors ; Calcium ; Calcium - chemistry ; Calmodulin - chemistry ; Cells ; Chromatography, High Pressure Liquid ; DNA ; Dynamic range ; Fluorescence ; Hydrogen-Ion Concentration ; Kinetics ; Molecular Conformation ; Molecular structure ; Mutation ; Optimization ; Protein Binding ; Protein Folding ; Proteins ; Signal detection ; Signal Transduction ; Spectrometry, Fluorescence - methods ; Thermodynamic equilibrium ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-08, Vol.106 (33), p.13802-13807</ispartof><rights>Copyright National Academy of Sciences Aug 18, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-faad925ce7eb07cf7ad6501ed21d083810389d2785b1cd225480a198dcf22dd73</citedby><cites>FETCH-LOGICAL-c620t-faad925ce7eb07cf7ad6501ed21d083810389d2785b1cd225480a198dcf22dd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40484322$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40484322$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19666496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vallée-Bélisle, Alexis</creatorcontrib><creatorcontrib>Ricci, Francesco</creatorcontrib><creatorcontrib>Plaxco, Kevin W</creatorcontrib><title>Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Binding-induced biomolecular switches are used throughout nature and, increasingly, throughout biotechnology for the detection of chemical moieties and the subsequent transduction of this detection into useful outputs. Here we show that the thermodynamics of these switches are quantitatively described by a simple 3-state population-shift model, in which the equilibrium between a nonbinding, nonsignaling state and the binding-competent, signaling state is shifted toward the latter upon target binding. Because of this, their performance is determined by the tradeoff inherent to their switching thermodynamics; while a switching equilibrium constant favoring the nonbinding, nonsignaling, conformation ensures a larger signal change (more molecules are poised to respond), it also reduces affinity (binding must overcome a more unfavorable conformational free energy). We then derive and employ the relationship between switching thermodynamics and switch signaling to rationally tune the dynamic range and detection limit of a representative structure-switching biosensor, a molecular beacon, over 4 orders of magnitude. These findings demonstrate that the performance of biomolecular switches can be rationally tuned via mutations that alter their switching thermodynamics and suggest a mechanism by which the performance of naturally occurring switches may have evolved.</description><subject>Beacons</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Calcium</subject><subject>Calcium - chemistry</subject><subject>Calmodulin - chemistry</subject><subject>Cells</subject><subject>Chromatography, High Pressure Liquid</subject><subject>DNA</subject><subject>Dynamic range</subject><subject>Fluorescence</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Molecular Conformation</subject><subject>Molecular structure</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Signal detection</subject><subject>Signal Transduction</subject><subject>Spectrometry, Fluorescence - methods</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxSMEokvhzAmwOFTikHbsJP64IKGKAlIlDrRny2s7u14l9mI7QPnrcZRVF7j0NLLn955m5lXVSwznGFhzsfcqnYOAFqDDQB9VKwwC17QV8LhaARBW85a0J9WzlHYAIDoOT6sTLCgtDF1V-WZr4xjMnVej02itkkuoDxHlrUVhn93ofqvsgkehR2vnjfObupRJW1PeYQyD1dOgIko_XdZbm5DyBqUcJ52naOvlu6hmOlmfQkzPqye9GpJ9cain1e3Vx5vLz_X1109fLj9c15oSyHWvlBGk05bZNTDdM2VoB9gagg3whmNouDCE8W6NtSGkazkoLLjRPSHGsOa0er_47qf1aI22Pkc1yH10o4p3Mign_-14t5Wb8EMSRrhgXTE4OxjE8H2yKcvRJW2HQXkbpiQpo-XqnD4IEuAgGCYFfPsfuAtT9OUKhcFtCbXjBbpYIB1DStH29yNjkHPucs5dHnMvitd_b3rkD0EXAB2AWXm0o7JpJG44zKO9ewCR_TQM2f7KhX21sLuUQ7yHW2h525DZ683S71WQahNdkrffyoINYEoFCNL8AbxJ2B8</recordid><startdate>20090818</startdate><enddate>20090818</enddate><creator>Vallée-Bélisle, Alexis</creator><creator>Ricci, Francesco</creator><creator>Plaxco, Kevin W</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090818</creationdate><title>Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors</title><author>Vallée-Bélisle, Alexis ; Ricci, Francesco ; Plaxco, Kevin W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-faad925ce7eb07cf7ad6501ed21d083810389d2785b1cd225480a198dcf22dd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Beacons</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Calcium</topic><topic>Calcium - chemistry</topic><topic>Calmodulin - chemistry</topic><topic>Cells</topic><topic>Chromatography, High Pressure Liquid</topic><topic>DNA</topic><topic>Dynamic range</topic><topic>Fluorescence</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Molecular Conformation</topic><topic>Molecular structure</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Signal detection</topic><topic>Signal Transduction</topic><topic>Spectrometry, Fluorescence - methods</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vallée-Bélisle, Alexis</creatorcontrib><creatorcontrib>Ricci, Francesco</creatorcontrib><creatorcontrib>Plaxco, Kevin W</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vallée-Bélisle, Alexis</au><au>Ricci, Francesco</au><au>Plaxco, Kevin W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-08-18</date><risdate>2009</risdate><volume>106</volume><issue>33</issue><spage>13802</spage><epage>13807</epage><pages>13802-13807</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Binding-induced biomolecular switches are used throughout nature and, increasingly, throughout biotechnology for the detection of chemical moieties and the subsequent transduction of this detection into useful outputs. Here we show that the thermodynamics of these switches are quantitatively described by a simple 3-state population-shift model, in which the equilibrium between a nonbinding, nonsignaling state and the binding-competent, signaling state is shifted toward the latter upon target binding. Because of this, their performance is determined by the tradeoff inherent to their switching thermodynamics; while a switching equilibrium constant favoring the nonbinding, nonsignaling, conformation ensures a larger signal change (more molecules are poised to respond), it also reduces affinity (binding must overcome a more unfavorable conformational free energy). We then derive and employ the relationship between switching thermodynamics and switch signaling to rationally tune the dynamic range and detection limit of a representative structure-switching biosensor, a molecular beacon, over 4 orders of magnitude. These findings demonstrate that the performance of biomolecular switches can be rationally tuned via mutations that alter their switching thermodynamics and suggest a mechanism by which the performance of naturally occurring switches may have evolved.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19666496</pmid><doi>10.1073/pnas.0904005106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2009-08, Vol.106 (33), p.13802-13807 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_0904005106 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Beacons Binding Sites Biological Sciences Biosensing Techniques Biosensors Calcium Calcium - chemistry Calmodulin - chemistry Cells Chromatography, High Pressure Liquid DNA Dynamic range Fluorescence Hydrogen-Ion Concentration Kinetics Molecular Conformation Molecular structure Mutation Optimization Protein Binding Protein Folding Proteins Signal detection Signal Transduction Spectrometry, Fluorescence - methods Thermodynamic equilibrium Thermodynamics |
title | Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20basis%20for%20the%20optimization%20of%20binding-induced%20biomolecular%20switches%20and%20structure-switching%20biosensors&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Vall%C3%A9e-B%C3%A9lisle,%20Alexis&rft.date=2009-08-18&rft.volume=106&rft.issue=33&rft.spage=13802&rft.epage=13807&rft.pages=13802-13807&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0904005106&rft_dat=%3Cjstor_cross%3E40484322%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201410758&rft_id=info:pmid/19666496&rft_jstor_id=40484322&rfr_iscdi=true |