Electrodeposition of metals from supercritical fluids
Electrodeposition is a widely used materials-deposition technology with a number of unique features, in particular, the efficient use of starting materials, conformal, and directed coating. The properties of the solvent medium for electrodeposition are critical to the technique's applicability....
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-09, Vol.106 (35), p.14768-14772 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14772 |
---|---|
container_issue | 35 |
container_start_page | 14768 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 106 |
creator | Ke, Jie Su, Wenta Howdle, Steven M George, Michael W Cook, David Perdjon-Abel, Magda Bartlett, Philip N Zhang, Wenjian Cheng, Fei Levason, William Reid, Gillian Hyde, Jason Wilson, James Smith, David C Mallik, Kanad Sazio, Pier |
description | Electrodeposition is a widely used materials-deposition technology with a number of unique features, in particular, the efficient use of starting materials, conformal, and directed coating. The properties of the solvent medium for electrodeposition are critical to the technique's applicability. Supercritical fluids are unique solvents which give a wide range of advantages for chemistry in general, and materials processing in particular. However, a widely applicable approach to electrodeposition from supercritical fluids has not yet been developed. We present here a method that allows electrodeposition of a range of metals from supercritical carbon dioxide, using acetonitrile as a co-solvent and supercritical difluoromethane. This method is based on a careful selection of reagent and supporting electrolyte. There are no obvious barriers preventing this method being applied to deposit a range of materials from many different supercritical fluids. We present the deposition of 3-nm diameter nanowires in mesoporous silica templates using this methodology. |
doi_str_mv | 10.1073/pnas.0901986106 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0901986106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40484504</jstor_id><sourcerecordid>40484504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-39767f2e29e0ea315c326c4ff7351ff568528112bf0adc0cbc431d664b358fac3</originalsourceid><addsrcrecordid>eNqFkb1vFDEQxS1ERC6BmgpYUSCl2GT8bTdIKEogUiQKSG35vHbY0-56sb0R_Pf4dKcc0KSa4v3mzTw9hF5jOMcg6cU82XwOGrBWAoN4hlYYNG4F0_AcrQCIbBUj7Bid5LwBAM0VvEDHWEsQTOoV4leDdyXFzs8x96WPUxNDM_pih9yEFMcmL7NPLlXN2aEJw9J3-SU6ChXwr_bzFN1dX32__NLefv18c_nptnVc6dJSLYUMxBPtwVuKuaNEOBaCpByHwIXiRGFM1gFs58CtHaO4E4KtKVfBOnqKPu5852U9-s75qSQ7mDn1o02_TbS9-VeZ-h_mPj4YIqlglFSDD3uDFH8uPhcz9tn5YbCTj0s2oj6oFJcVfP8fuIlLmmo4QwAzIBirCl3sIJdizsmHx08wmG0fZtuHOfRRN97-HeDA7wuoQLMHtpsHO2EoN5hJsb169gRiwjIMxf8qlX2zYze5xPQIM2CKcWBVf7fTg43G3qc-m7tvNSAFLCQXVNA_4rSyXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201402118</pqid></control><display><type>article</type><title>Electrodeposition of metals from supercritical fluids</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ke, Jie ; Su, Wenta ; Howdle, Steven M ; George, Michael W ; Cook, David ; Perdjon-Abel, Magda ; Bartlett, Philip N ; Zhang, Wenjian ; Cheng, Fei ; Levason, William ; Reid, Gillian ; Hyde, Jason ; Wilson, James ; Smith, David C ; Mallik, Kanad ; Sazio, Pier</creator><creatorcontrib>Ke, Jie ; Su, Wenta ; Howdle, Steven M ; George, Michael W ; Cook, David ; Perdjon-Abel, Magda ; Bartlett, Philip N ; Zhang, Wenjian ; Cheng, Fei ; Levason, William ; Reid, Gillian ; Hyde, Jason ; Wilson, James ; Smith, David C ; Mallik, Kanad ; Sazio, Pier</creatorcontrib><description>Electrodeposition is a widely used materials-deposition technology with a number of unique features, in particular, the efficient use of starting materials, conformal, and directed coating. The properties of the solvent medium for electrodeposition are critical to the technique's applicability. Supercritical fluids are unique solvents which give a wide range of advantages for chemistry in general, and materials processing in particular. However, a widely applicable approach to electrodeposition from supercritical fluids has not yet been developed. We present here a method that allows electrodeposition of a range of metals from supercritical carbon dioxide, using acetonitrile as a co-solvent and supercritical difluoromethane. This method is based on a careful selection of reagent and supporting electrolyte. There are no obvious barriers preventing this method being applied to deposit a range of materials from many different supercritical fluids. We present the deposition of 3-nm diameter nanowires in mesoporous silica templates using this methodology.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0901986106</identifier><identifier>PMID: 19706479</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Carbon dioxide ; Conductivity ; Copper ; Electrochemical cells ; Electrodeposition ; Electrodes ; Electrolytes ; Fluids ; Materials ; Metals ; Methods ; Nanowires ; Physical Sciences ; Silica ; Solvents ; Supercritical fluids</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-09, Vol.106 (35), p.14768-14772</ispartof><rights>Copyright National Academy of Sciences Sep 1, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-39767f2e29e0ea315c326c4ff7351ff568528112bf0adc0cbc431d664b358fac3</citedby><cites>FETCH-LOGICAL-c589t-39767f2e29e0ea315c326c4ff7351ff568528112bf0adc0cbc431d664b358fac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/35.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40484504$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40484504$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19706479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ke, Jie</creatorcontrib><creatorcontrib>Su, Wenta</creatorcontrib><creatorcontrib>Howdle, Steven M</creatorcontrib><creatorcontrib>George, Michael W</creatorcontrib><creatorcontrib>Cook, David</creatorcontrib><creatorcontrib>Perdjon-Abel, Magda</creatorcontrib><creatorcontrib>Bartlett, Philip N</creatorcontrib><creatorcontrib>Zhang, Wenjian</creatorcontrib><creatorcontrib>Cheng, Fei</creatorcontrib><creatorcontrib>Levason, William</creatorcontrib><creatorcontrib>Reid, Gillian</creatorcontrib><creatorcontrib>Hyde, Jason</creatorcontrib><creatorcontrib>Wilson, James</creatorcontrib><creatorcontrib>Smith, David C</creatorcontrib><creatorcontrib>Mallik, Kanad</creatorcontrib><creatorcontrib>Sazio, Pier</creatorcontrib><title>Electrodeposition of metals from supercritical fluids</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Electrodeposition is a widely used materials-deposition technology with a number of unique features, in particular, the efficient use of starting materials, conformal, and directed coating. The properties of the solvent medium for electrodeposition are critical to the technique's applicability. Supercritical fluids are unique solvents which give a wide range of advantages for chemistry in general, and materials processing in particular. However, a widely applicable approach to electrodeposition from supercritical fluids has not yet been developed. We present here a method that allows electrodeposition of a range of metals from supercritical carbon dioxide, using acetonitrile as a co-solvent and supercritical difluoromethane. This method is based on a careful selection of reagent and supporting electrolyte. There are no obvious barriers preventing this method being applied to deposit a range of materials from many different supercritical fluids. We present the deposition of 3-nm diameter nanowires in mesoporous silica templates using this methodology.</description><subject>Carbon dioxide</subject><subject>Conductivity</subject><subject>Copper</subject><subject>Electrochemical cells</subject><subject>Electrodeposition</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Fluids</subject><subject>Materials</subject><subject>Metals</subject><subject>Methods</subject><subject>Nanowires</subject><subject>Physical Sciences</subject><subject>Silica</subject><subject>Solvents</subject><subject>Supercritical fluids</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkb1vFDEQxS1ERC6BmgpYUSCl2GT8bTdIKEogUiQKSG35vHbY0-56sb0R_Pf4dKcc0KSa4v3mzTw9hF5jOMcg6cU82XwOGrBWAoN4hlYYNG4F0_AcrQCIbBUj7Bid5LwBAM0VvEDHWEsQTOoV4leDdyXFzs8x96WPUxNDM_pih9yEFMcmL7NPLlXN2aEJw9J3-SU6ChXwr_bzFN1dX32__NLefv18c_nptnVc6dJSLYUMxBPtwVuKuaNEOBaCpByHwIXiRGFM1gFs58CtHaO4E4KtKVfBOnqKPu5852U9-s75qSQ7mDn1o02_TbS9-VeZ-h_mPj4YIqlglFSDD3uDFH8uPhcz9tn5YbCTj0s2oj6oFJcVfP8fuIlLmmo4QwAzIBirCl3sIJdizsmHx08wmG0fZtuHOfRRN97-HeDA7wuoQLMHtpsHO2EoN5hJsb169gRiwjIMxf8qlX2zYze5xPQIM2CKcWBVf7fTg43G3qc-m7tvNSAFLCQXVNA_4rSyXQ</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Ke, Jie</creator><creator>Su, Wenta</creator><creator>Howdle, Steven M</creator><creator>George, Michael W</creator><creator>Cook, David</creator><creator>Perdjon-Abel, Magda</creator><creator>Bartlett, Philip N</creator><creator>Zhang, Wenjian</creator><creator>Cheng, Fei</creator><creator>Levason, William</creator><creator>Reid, Gillian</creator><creator>Hyde, Jason</creator><creator>Wilson, James</creator><creator>Smith, David C</creator><creator>Mallik, Kanad</creator><creator>Sazio, Pier</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090901</creationdate><title>Electrodeposition of metals from supercritical fluids</title><author>Ke, Jie ; Su, Wenta ; Howdle, Steven M ; George, Michael W ; Cook, David ; Perdjon-Abel, Magda ; Bartlett, Philip N ; Zhang, Wenjian ; Cheng, Fei ; Levason, William ; Reid, Gillian ; Hyde, Jason ; Wilson, James ; Smith, David C ; Mallik, Kanad ; Sazio, Pier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-39767f2e29e0ea315c326c4ff7351ff568528112bf0adc0cbc431d664b358fac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Carbon dioxide</topic><topic>Conductivity</topic><topic>Copper</topic><topic>Electrochemical cells</topic><topic>Electrodeposition</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Fluids</topic><topic>Materials</topic><topic>Metals</topic><topic>Methods</topic><topic>Nanowires</topic><topic>Physical Sciences</topic><topic>Silica</topic><topic>Solvents</topic><topic>Supercritical fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Jie</creatorcontrib><creatorcontrib>Su, Wenta</creatorcontrib><creatorcontrib>Howdle, Steven M</creatorcontrib><creatorcontrib>George, Michael W</creatorcontrib><creatorcontrib>Cook, David</creatorcontrib><creatorcontrib>Perdjon-Abel, Magda</creatorcontrib><creatorcontrib>Bartlett, Philip N</creatorcontrib><creatorcontrib>Zhang, Wenjian</creatorcontrib><creatorcontrib>Cheng, Fei</creatorcontrib><creatorcontrib>Levason, William</creatorcontrib><creatorcontrib>Reid, Gillian</creatorcontrib><creatorcontrib>Hyde, Jason</creatorcontrib><creatorcontrib>Wilson, James</creatorcontrib><creatorcontrib>Smith, David C</creatorcontrib><creatorcontrib>Mallik, Kanad</creatorcontrib><creatorcontrib>Sazio, Pier</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke, Jie</au><au>Su, Wenta</au><au>Howdle, Steven M</au><au>George, Michael W</au><au>Cook, David</au><au>Perdjon-Abel, Magda</au><au>Bartlett, Philip N</au><au>Zhang, Wenjian</au><au>Cheng, Fei</au><au>Levason, William</au><au>Reid, Gillian</au><au>Hyde, Jason</au><au>Wilson, James</au><au>Smith, David C</au><au>Mallik, Kanad</au><au>Sazio, Pier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrodeposition of metals from supercritical fluids</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>106</volume><issue>35</issue><spage>14768</spage><epage>14772</epage><pages>14768-14772</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Electrodeposition is a widely used materials-deposition technology with a number of unique features, in particular, the efficient use of starting materials, conformal, and directed coating. The properties of the solvent medium for electrodeposition are critical to the technique's applicability. Supercritical fluids are unique solvents which give a wide range of advantages for chemistry in general, and materials processing in particular. However, a widely applicable approach to electrodeposition from supercritical fluids has not yet been developed. We present here a method that allows electrodeposition of a range of metals from supercritical carbon dioxide, using acetonitrile as a co-solvent and supercritical difluoromethane. This method is based on a careful selection of reagent and supporting electrolyte. There are no obvious barriers preventing this method being applied to deposit a range of materials from many different supercritical fluids. We present the deposition of 3-nm diameter nanowires in mesoporous silica templates using this methodology.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19706479</pmid><doi>10.1073/pnas.0901986106</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2009-09, Vol.106 (35), p.14768-14772 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_0901986106 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Carbon dioxide Conductivity Copper Electrochemical cells Electrodeposition Electrodes Electrolytes Fluids Materials Metals Methods Nanowires Physical Sciences Silica Solvents Supercritical fluids |
title | Electrodeposition of metals from supercritical fluids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrodeposition%20of%20metals%20from%20supercritical%20fluids&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ke,%20Jie&rft.date=2009-09-01&rft.volume=106&rft.issue=35&rft.spage=14768&rft.epage=14772&rft.pages=14768-14772&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0901986106&rft_dat=%3Cjstor_cross%3E40484504%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201402118&rft_id=info:pmid/19706479&rft_jstor_id=40484504&rfr_iscdi=true |