Electrodeposition of metals from supercritical fluids

Electrodeposition is a widely used materials-deposition technology with a number of unique features, in particular, the efficient use of starting materials, conformal, and directed coating. The properties of the solvent medium for electrodeposition are critical to the technique's applicability....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2009-09, Vol.106 (35), p.14768-14772
Hauptverfasser: Ke, Jie, Su, Wenta, Howdle, Steven M, George, Michael W, Cook, David, Perdjon-Abel, Magda, Bartlett, Philip N, Zhang, Wenjian, Cheng, Fei, Levason, William, Reid, Gillian, Hyde, Jason, Wilson, James, Smith, David C, Mallik, Kanad, Sazio, Pier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14772
container_issue 35
container_start_page 14768
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 106
creator Ke, Jie
Su, Wenta
Howdle, Steven M
George, Michael W
Cook, David
Perdjon-Abel, Magda
Bartlett, Philip N
Zhang, Wenjian
Cheng, Fei
Levason, William
Reid, Gillian
Hyde, Jason
Wilson, James
Smith, David C
Mallik, Kanad
Sazio, Pier
description Electrodeposition is a widely used materials-deposition technology with a number of unique features, in particular, the efficient use of starting materials, conformal, and directed coating. The properties of the solvent medium for electrodeposition are critical to the technique's applicability. Supercritical fluids are unique solvents which give a wide range of advantages for chemistry in general, and materials processing in particular. However, a widely applicable approach to electrodeposition from supercritical fluids has not yet been developed. We present here a method that allows electrodeposition of a range of metals from supercritical carbon dioxide, using acetonitrile as a co-solvent and supercritical difluoromethane. This method is based on a careful selection of reagent and supporting electrolyte. There are no obvious barriers preventing this method being applied to deposit a range of materials from many different supercritical fluids. We present the deposition of 3-nm diameter nanowires in mesoporous silica templates using this methodology.
doi_str_mv 10.1073/pnas.0901986106
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0901986106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40484504</jstor_id><sourcerecordid>40484504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-39767f2e29e0ea315c326c4ff7351ff568528112bf0adc0cbc431d664b358fac3</originalsourceid><addsrcrecordid>eNqFkb1vFDEQxS1ERC6BmgpYUSCl2GT8bTdIKEogUiQKSG35vHbY0-56sb0R_Pf4dKcc0KSa4v3mzTw9hF5jOMcg6cU82XwOGrBWAoN4hlYYNG4F0_AcrQCIbBUj7Bid5LwBAM0VvEDHWEsQTOoV4leDdyXFzs8x96WPUxNDM_pih9yEFMcmL7NPLlXN2aEJw9J3-SU6ChXwr_bzFN1dX32__NLefv18c_nptnVc6dJSLYUMxBPtwVuKuaNEOBaCpByHwIXiRGFM1gFs58CtHaO4E4KtKVfBOnqKPu5852U9-s75qSQ7mDn1o02_TbS9-VeZ-h_mPj4YIqlglFSDD3uDFH8uPhcz9tn5YbCTj0s2oj6oFJcVfP8fuIlLmmo4QwAzIBirCl3sIJdizsmHx08wmG0fZtuHOfRRN97-HeDA7wuoQLMHtpsHO2EoN5hJsb169gRiwjIMxf8qlX2zYze5xPQIM2CKcWBVf7fTg43G3qc-m7tvNSAFLCQXVNA_4rSyXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201402118</pqid></control><display><type>article</type><title>Electrodeposition of metals from supercritical fluids</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ke, Jie ; Su, Wenta ; Howdle, Steven M ; George, Michael W ; Cook, David ; Perdjon-Abel, Magda ; Bartlett, Philip N ; Zhang, Wenjian ; Cheng, Fei ; Levason, William ; Reid, Gillian ; Hyde, Jason ; Wilson, James ; Smith, David C ; Mallik, Kanad ; Sazio, Pier</creator><creatorcontrib>Ke, Jie ; Su, Wenta ; Howdle, Steven M ; George, Michael W ; Cook, David ; Perdjon-Abel, Magda ; Bartlett, Philip N ; Zhang, Wenjian ; Cheng, Fei ; Levason, William ; Reid, Gillian ; Hyde, Jason ; Wilson, James ; Smith, David C ; Mallik, Kanad ; Sazio, Pier</creatorcontrib><description>Electrodeposition is a widely used materials-deposition technology with a number of unique features, in particular, the efficient use of starting materials, conformal, and directed coating. The properties of the solvent medium for electrodeposition are critical to the technique's applicability. Supercritical fluids are unique solvents which give a wide range of advantages for chemistry in general, and materials processing in particular. However, a widely applicable approach to electrodeposition from supercritical fluids has not yet been developed. We present here a method that allows electrodeposition of a range of metals from supercritical carbon dioxide, using acetonitrile as a co-solvent and supercritical difluoromethane. This method is based on a careful selection of reagent and supporting electrolyte. There are no obvious barriers preventing this method being applied to deposit a range of materials from many different supercritical fluids. We present the deposition of 3-nm diameter nanowires in mesoporous silica templates using this methodology.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0901986106</identifier><identifier>PMID: 19706479</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Carbon dioxide ; Conductivity ; Copper ; Electrochemical cells ; Electrodeposition ; Electrodes ; Electrolytes ; Fluids ; Materials ; Metals ; Methods ; Nanowires ; Physical Sciences ; Silica ; Solvents ; Supercritical fluids</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-09, Vol.106 (35), p.14768-14772</ispartof><rights>Copyright National Academy of Sciences Sep 1, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-39767f2e29e0ea315c326c4ff7351ff568528112bf0adc0cbc431d664b358fac3</citedby><cites>FETCH-LOGICAL-c589t-39767f2e29e0ea315c326c4ff7351ff568528112bf0adc0cbc431d664b358fac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/35.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40484504$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40484504$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19706479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ke, Jie</creatorcontrib><creatorcontrib>Su, Wenta</creatorcontrib><creatorcontrib>Howdle, Steven M</creatorcontrib><creatorcontrib>George, Michael W</creatorcontrib><creatorcontrib>Cook, David</creatorcontrib><creatorcontrib>Perdjon-Abel, Magda</creatorcontrib><creatorcontrib>Bartlett, Philip N</creatorcontrib><creatorcontrib>Zhang, Wenjian</creatorcontrib><creatorcontrib>Cheng, Fei</creatorcontrib><creatorcontrib>Levason, William</creatorcontrib><creatorcontrib>Reid, Gillian</creatorcontrib><creatorcontrib>Hyde, Jason</creatorcontrib><creatorcontrib>Wilson, James</creatorcontrib><creatorcontrib>Smith, David C</creatorcontrib><creatorcontrib>Mallik, Kanad</creatorcontrib><creatorcontrib>Sazio, Pier</creatorcontrib><title>Electrodeposition of metals from supercritical fluids</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Electrodeposition is a widely used materials-deposition technology with a number of unique features, in particular, the efficient use of starting materials, conformal, and directed coating. The properties of the solvent medium for electrodeposition are critical to the technique's applicability. Supercritical fluids are unique solvents which give a wide range of advantages for chemistry in general, and materials processing in particular. However, a widely applicable approach to electrodeposition from supercritical fluids has not yet been developed. We present here a method that allows electrodeposition of a range of metals from supercritical carbon dioxide, using acetonitrile as a co-solvent and supercritical difluoromethane. This method is based on a careful selection of reagent and supporting electrolyte. There are no obvious barriers preventing this method being applied to deposit a range of materials from many different supercritical fluids. We present the deposition of 3-nm diameter nanowires in mesoporous silica templates using this methodology.</description><subject>Carbon dioxide</subject><subject>Conductivity</subject><subject>Copper</subject><subject>Electrochemical cells</subject><subject>Electrodeposition</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Fluids</subject><subject>Materials</subject><subject>Metals</subject><subject>Methods</subject><subject>Nanowires</subject><subject>Physical Sciences</subject><subject>Silica</subject><subject>Solvents</subject><subject>Supercritical fluids</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkb1vFDEQxS1ERC6BmgpYUSCl2GT8bTdIKEogUiQKSG35vHbY0-56sb0R_Pf4dKcc0KSa4v3mzTw9hF5jOMcg6cU82XwOGrBWAoN4hlYYNG4F0_AcrQCIbBUj7Bid5LwBAM0VvEDHWEsQTOoV4leDdyXFzs8x96WPUxNDM_pih9yEFMcmL7NPLlXN2aEJw9J3-SU6ChXwr_bzFN1dX32__NLefv18c_nptnVc6dJSLYUMxBPtwVuKuaNEOBaCpByHwIXiRGFM1gFs58CtHaO4E4KtKVfBOnqKPu5852U9-s75qSQ7mDn1o02_TbS9-VeZ-h_mPj4YIqlglFSDD3uDFH8uPhcz9tn5YbCTj0s2oj6oFJcVfP8fuIlLmmo4QwAzIBirCl3sIJdizsmHx08wmG0fZtuHOfRRN97-HeDA7wuoQLMHtpsHO2EoN5hJsb169gRiwjIMxf8qlX2zYze5xPQIM2CKcWBVf7fTg43G3qc-m7tvNSAFLCQXVNA_4rSyXQ</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Ke, Jie</creator><creator>Su, Wenta</creator><creator>Howdle, Steven M</creator><creator>George, Michael W</creator><creator>Cook, David</creator><creator>Perdjon-Abel, Magda</creator><creator>Bartlett, Philip N</creator><creator>Zhang, Wenjian</creator><creator>Cheng, Fei</creator><creator>Levason, William</creator><creator>Reid, Gillian</creator><creator>Hyde, Jason</creator><creator>Wilson, James</creator><creator>Smith, David C</creator><creator>Mallik, Kanad</creator><creator>Sazio, Pier</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090901</creationdate><title>Electrodeposition of metals from supercritical fluids</title><author>Ke, Jie ; Su, Wenta ; Howdle, Steven M ; George, Michael W ; Cook, David ; Perdjon-Abel, Magda ; Bartlett, Philip N ; Zhang, Wenjian ; Cheng, Fei ; Levason, William ; Reid, Gillian ; Hyde, Jason ; Wilson, James ; Smith, David C ; Mallik, Kanad ; Sazio, Pier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-39767f2e29e0ea315c326c4ff7351ff568528112bf0adc0cbc431d664b358fac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Carbon dioxide</topic><topic>Conductivity</topic><topic>Copper</topic><topic>Electrochemical cells</topic><topic>Electrodeposition</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Fluids</topic><topic>Materials</topic><topic>Metals</topic><topic>Methods</topic><topic>Nanowires</topic><topic>Physical Sciences</topic><topic>Silica</topic><topic>Solvents</topic><topic>Supercritical fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Jie</creatorcontrib><creatorcontrib>Su, Wenta</creatorcontrib><creatorcontrib>Howdle, Steven M</creatorcontrib><creatorcontrib>George, Michael W</creatorcontrib><creatorcontrib>Cook, David</creatorcontrib><creatorcontrib>Perdjon-Abel, Magda</creatorcontrib><creatorcontrib>Bartlett, Philip N</creatorcontrib><creatorcontrib>Zhang, Wenjian</creatorcontrib><creatorcontrib>Cheng, Fei</creatorcontrib><creatorcontrib>Levason, William</creatorcontrib><creatorcontrib>Reid, Gillian</creatorcontrib><creatorcontrib>Hyde, Jason</creatorcontrib><creatorcontrib>Wilson, James</creatorcontrib><creatorcontrib>Smith, David C</creatorcontrib><creatorcontrib>Mallik, Kanad</creatorcontrib><creatorcontrib>Sazio, Pier</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke, Jie</au><au>Su, Wenta</au><au>Howdle, Steven M</au><au>George, Michael W</au><au>Cook, David</au><au>Perdjon-Abel, Magda</au><au>Bartlett, Philip N</au><au>Zhang, Wenjian</au><au>Cheng, Fei</au><au>Levason, William</au><au>Reid, Gillian</au><au>Hyde, Jason</au><au>Wilson, James</au><au>Smith, David C</au><au>Mallik, Kanad</au><au>Sazio, Pier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrodeposition of metals from supercritical fluids</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>106</volume><issue>35</issue><spage>14768</spage><epage>14772</epage><pages>14768-14772</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Electrodeposition is a widely used materials-deposition technology with a number of unique features, in particular, the efficient use of starting materials, conformal, and directed coating. The properties of the solvent medium for electrodeposition are critical to the technique's applicability. Supercritical fluids are unique solvents which give a wide range of advantages for chemistry in general, and materials processing in particular. However, a widely applicable approach to electrodeposition from supercritical fluids has not yet been developed. We present here a method that allows electrodeposition of a range of metals from supercritical carbon dioxide, using acetonitrile as a co-solvent and supercritical difluoromethane. This method is based on a careful selection of reagent and supporting electrolyte. There are no obvious barriers preventing this method being applied to deposit a range of materials from many different supercritical fluids. We present the deposition of 3-nm diameter nanowires in mesoporous silica templates using this methodology.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19706479</pmid><doi>10.1073/pnas.0901986106</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2009-09, Vol.106 (35), p.14768-14772
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_0901986106
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Carbon dioxide
Conductivity
Copper
Electrochemical cells
Electrodeposition
Electrodes
Electrolytes
Fluids
Materials
Metals
Methods
Nanowires
Physical Sciences
Silica
Solvents
Supercritical fluids
title Electrodeposition of metals from supercritical fluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrodeposition%20of%20metals%20from%20supercritical%20fluids&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ke,%20Jie&rft.date=2009-09-01&rft.volume=106&rft.issue=35&rft.spage=14768&rft.epage=14772&rft.pages=14768-14772&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0901986106&rft_dat=%3Cjstor_cross%3E40484504%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201402118&rft_id=info:pmid/19706479&rft_jstor_id=40484504&rfr_iscdi=true