TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity
The role of various p73 isoforms in tumorigenesis has been controversial. However, as we have recently shown, the generation of TAp73-deficient (TAp73⁻/⁻) mice reveals that TAp73 isoforms exert tumor-suppressive functions, indicating an emerging role for Trp-73 in the maintenance of genomic stabilit...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-01, Vol.106 (3), p.797-802 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 802 |
---|---|
container_issue | 3 |
container_start_page | 797 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 106 |
creator | Tomasini, Richard Tsuchihara, Katsuya Tsuda, Chiharu Lau, Suzanne K Wilhelm, Margareta Ruffini, Alessandro Tsao, Ming-sound Iovanna, Juan L Jurisicova, Andrea Melino, Gerry Mak, Tak W |
description | The role of various p73 isoforms in tumorigenesis has been controversial. However, as we have recently shown, the generation of TAp73-deficient (TAp73⁻/⁻) mice reveals that TAp73 isoforms exert tumor-suppressive functions, indicating an emerging role for Trp-73 in the maintenance of genomic stability. Unlike mice lacking all p73 isoforms, TAp73⁻/⁻ mice show a high incidence of spontaneous tumors. Moreover, TAp73⁻/⁻ mice are infertile and produce oocytes exhibiting spindle abnormalities. These data suggest a link between TAp73 activities and the common molecular machinery underlying meiosis and mitosis. Previous studies have indicated that the spindle assembly checkpoint (SAC) complex, whose activation leads to mitotic arrest, also regulates meiosis. In this study, we demonstrate in murine and human cells that TAp73 is able to interact directly with several partners of the SAC complex (Bub1, Bub3, and BubR1). We also show that TAp73 is involved in SAC protein localization and activities. Moreover, we show that decreased TAp73 expression correlates with increases of SAC protein expression in patients with lung cancer. Our results establish TAp73 as a regulator of SAC responses and indicate that TAp73 loss can lead to mitotic arrest defects. Our data suggest that SAC impairment in the absence of functional TAp73 could explain the genomic instability and increased aneuploidy observed in TAp73-deficient cells. |
doi_str_mv | 10.1073/pnas.0812096106 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0812096106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40254751</jstor_id><sourcerecordid>40254751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-2f7b5952159eb030ff760258093424ca5dbf8b2a76269ba2119a4200043fd5953</originalsourceid><addsrcrecordid>eNptkU1v1DAYhC0EokvhzAmwOHBL-_ojdnxBKhVf0kpI0J4tJ3F2vSRxsJ2K_fc42lW3IE4-zPOOZjwIvSRwQUCyy2k08QIqQkEJAuIRWhFQpBBcwWO0AqCyqDjlZ-hZjDsAUGUFT9EZUYQpptQKrW-uJslwsJu5N8lGnLYWx8mNbW-xidEOdb_HzdY2PyfvxoTrPR58u8Bu3OAPc_2dYNMkd-fS_jl60pk-2hfH9xzdfvp4c_2lWH_7_PX6al00JZGpoJ2sS1VSUipbA4OukwJoTqZYztqYsq27qqZGCipUbSghynCa03PWtfmQnaP3B99prgfbNnZMwfR6Cm4wYa-9cfpvZXRbvfF3mgpKKFfZ4N3RIPhfs41JDy42tu_NaP0ctRAVE7yqMvj2H3Dn5zDmcpoC4VBRtsS5PEBN8DEG290nIaCXmfQykz7NlC9ePyxw4o-7ZODVEVguT3ZCMy2VfFDgv7ru5r5P9nc6Ge1i8uGe5Pm_uSxJ1t8c9M54bTbBRX37I1djQMoqr6XYHxxyt3I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201408235</pqid></control><display><type>article</type><title>TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tomasini, Richard ; Tsuchihara, Katsuya ; Tsuda, Chiharu ; Lau, Suzanne K ; Wilhelm, Margareta ; Ruffini, Alessandro ; Tsao, Ming-sound ; Iovanna, Juan L ; Jurisicova, Andrea ; Melino, Gerry ; Mak, Tak W</creator><creatorcontrib>Tomasini, Richard ; Tsuchihara, Katsuya ; Tsuda, Chiharu ; Lau, Suzanne K ; Wilhelm, Margareta ; Ruffini, Alessandro ; Tsao, Ming-sound ; Iovanna, Juan L ; Jurisicova, Andrea ; Melino, Gerry ; Mak, Tak W</creatorcontrib><description>The role of various p73 isoforms in tumorigenesis has been controversial. However, as we have recently shown, the generation of TAp73-deficient (TAp73⁻/⁻) mice reveals that TAp73 isoforms exert tumor-suppressive functions, indicating an emerging role for Trp-73 in the maintenance of genomic stability. Unlike mice lacking all p73 isoforms, TAp73⁻/⁻ mice show a high incidence of spontaneous tumors. Moreover, TAp73⁻/⁻ mice are infertile and produce oocytes exhibiting spindle abnormalities. These data suggest a link between TAp73 activities and the common molecular machinery underlying meiosis and mitosis. Previous studies have indicated that the spindle assembly checkpoint (SAC) complex, whose activation leads to mitotic arrest, also regulates meiosis. In this study, we demonstrate in murine and human cells that TAp73 is able to interact directly with several partners of the SAC complex (Bub1, Bub3, and BubR1). We also show that TAp73 is involved in SAC protein localization and activities. Moreover, we show that decreased TAp73 expression correlates with increases of SAC protein expression in patients with lung cancer. Our results establish TAp73 as a regulator of SAC responses and indicate that TAp73 loss can lead to mitotic arrest defects. Our data suggest that SAC impairment in the absence of functional TAp73 could explain the genomic instability and increased aneuploidy observed in TAp73-deficient cells.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0812096106</identifier><identifier>PMID: 19139399</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aneuploidy ; Animals ; Biological Sciences ; Cancer ; Cell Cycle Proteins ; Cell division ; Cells ; Chromosomal Instability ; Chromosomes ; Female ; Gene expression ; Genetic mutation ; HeLa cells ; Humans ; Lung neoplasms ; Mice ; Mitotic spindle apparatus ; Nuclear Proteins - analysis ; Nuclear Proteins - physiology ; Oocytes ; Protein isoforms ; Protein-Serine-Threonine Kinases - analysis ; Protein-Serine-Threonine Kinases - physiology ; Proteins ; Rodents ; Spindle Apparatus - chemistry ; Spindle Apparatus - physiology ; Studies ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-01, Vol.106 (3), p.797-802</ispartof><rights>Copyright National Academy of Sciences Jan 20, 2009</rights><rights>2009 by The National Academy of Sciences of the USA 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-2f7b5952159eb030ff760258093424ca5dbf8b2a76269ba2119a4200043fd5953</citedby><cites>FETCH-LOGICAL-c517t-2f7b5952159eb030ff760258093424ca5dbf8b2a76269ba2119a4200043fd5953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40254751$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40254751$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19139399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tomasini, Richard</creatorcontrib><creatorcontrib>Tsuchihara, Katsuya</creatorcontrib><creatorcontrib>Tsuda, Chiharu</creatorcontrib><creatorcontrib>Lau, Suzanne K</creatorcontrib><creatorcontrib>Wilhelm, Margareta</creatorcontrib><creatorcontrib>Ruffini, Alessandro</creatorcontrib><creatorcontrib>Tsao, Ming-sound</creatorcontrib><creatorcontrib>Iovanna, Juan L</creatorcontrib><creatorcontrib>Jurisicova, Andrea</creatorcontrib><creatorcontrib>Melino, Gerry</creatorcontrib><creatorcontrib>Mak, Tak W</creatorcontrib><title>TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The role of various p73 isoforms in tumorigenesis has been controversial. However, as we have recently shown, the generation of TAp73-deficient (TAp73⁻/⁻) mice reveals that TAp73 isoforms exert tumor-suppressive functions, indicating an emerging role for Trp-73 in the maintenance of genomic stability. Unlike mice lacking all p73 isoforms, TAp73⁻/⁻ mice show a high incidence of spontaneous tumors. Moreover, TAp73⁻/⁻ mice are infertile and produce oocytes exhibiting spindle abnormalities. These data suggest a link between TAp73 activities and the common molecular machinery underlying meiosis and mitosis. Previous studies have indicated that the spindle assembly checkpoint (SAC) complex, whose activation leads to mitotic arrest, also regulates meiosis. In this study, we demonstrate in murine and human cells that TAp73 is able to interact directly with several partners of the SAC complex (Bub1, Bub3, and BubR1). We also show that TAp73 is involved in SAC protein localization and activities. Moreover, we show that decreased TAp73 expression correlates with increases of SAC protein expression in patients with lung cancer. Our results establish TAp73 as a regulator of SAC responses and indicate that TAp73 loss can lead to mitotic arrest defects. Our data suggest that SAC impairment in the absence of functional TAp73 could explain the genomic instability and increased aneuploidy observed in TAp73-deficient cells.</description><subject>Aneuploidy</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Cell Cycle Proteins</subject><subject>Cell division</subject><subject>Cells</subject><subject>Chromosomal Instability</subject><subject>Chromosomes</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genetic mutation</subject><subject>HeLa cells</subject><subject>Humans</subject><subject>Lung neoplasms</subject><subject>Mice</subject><subject>Mitotic spindle apparatus</subject><subject>Nuclear Proteins - analysis</subject><subject>Nuclear Proteins - physiology</subject><subject>Oocytes</subject><subject>Protein isoforms</subject><subject>Protein-Serine-Threonine Kinases - analysis</subject><subject>Protein-Serine-Threonine Kinases - physiology</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Spindle Apparatus - chemistry</subject><subject>Spindle Apparatus - physiology</subject><subject>Studies</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkU1v1DAYhC0EokvhzAmwOHBL-_ojdnxBKhVf0kpI0J4tJ3F2vSRxsJ2K_fc42lW3IE4-zPOOZjwIvSRwQUCyy2k08QIqQkEJAuIRWhFQpBBcwWO0AqCyqDjlZ-hZjDsAUGUFT9EZUYQpptQKrW-uJslwsJu5N8lGnLYWx8mNbW-xidEOdb_HzdY2PyfvxoTrPR58u8Bu3OAPc_2dYNMkd-fS_jl60pk-2hfH9xzdfvp4c_2lWH_7_PX6al00JZGpoJ2sS1VSUipbA4OukwJoTqZYztqYsq27qqZGCipUbSghynCa03PWtfmQnaP3B99prgfbNnZMwfR6Cm4wYa-9cfpvZXRbvfF3mgpKKFfZ4N3RIPhfs41JDy42tu_NaP0ctRAVE7yqMvj2H3Dn5zDmcpoC4VBRtsS5PEBN8DEG290nIaCXmfQykz7NlC9ePyxw4o-7ZODVEVguT3ZCMy2VfFDgv7ru5r5P9nc6Ge1i8uGe5Pm_uSxJ1t8c9M54bTbBRX37I1djQMoqr6XYHxxyt3I</recordid><startdate>20090120</startdate><enddate>20090120</enddate><creator>Tomasini, Richard</creator><creator>Tsuchihara, Katsuya</creator><creator>Tsuda, Chiharu</creator><creator>Lau, Suzanne K</creator><creator>Wilhelm, Margareta</creator><creator>Ruffini, Alessandro</creator><creator>Tsao, Ming-sound</creator><creator>Iovanna, Juan L</creator><creator>Jurisicova, Andrea</creator><creator>Melino, Gerry</creator><creator>Mak, Tak W</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090120</creationdate><title>TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity</title><author>Tomasini, Richard ; Tsuchihara, Katsuya ; Tsuda, Chiharu ; Lau, Suzanne K ; Wilhelm, Margareta ; Ruffini, Alessandro ; Tsao, Ming-sound ; Iovanna, Juan L ; Jurisicova, Andrea ; Melino, Gerry ; Mak, Tak W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-2f7b5952159eb030ff760258093424ca5dbf8b2a76269ba2119a4200043fd5953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aneuploidy</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Cell Cycle Proteins</topic><topic>Cell division</topic><topic>Cells</topic><topic>Chromosomal Instability</topic><topic>Chromosomes</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genetic mutation</topic><topic>HeLa cells</topic><topic>Humans</topic><topic>Lung neoplasms</topic><topic>Mice</topic><topic>Mitotic spindle apparatus</topic><topic>Nuclear Proteins - analysis</topic><topic>Nuclear Proteins - physiology</topic><topic>Oocytes</topic><topic>Protein isoforms</topic><topic>Protein-Serine-Threonine Kinases - analysis</topic><topic>Protein-Serine-Threonine Kinases - physiology</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Spindle Apparatus - chemistry</topic><topic>Spindle Apparatus - physiology</topic><topic>Studies</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomasini, Richard</creatorcontrib><creatorcontrib>Tsuchihara, Katsuya</creatorcontrib><creatorcontrib>Tsuda, Chiharu</creatorcontrib><creatorcontrib>Lau, Suzanne K</creatorcontrib><creatorcontrib>Wilhelm, Margareta</creatorcontrib><creatorcontrib>Ruffini, Alessandro</creatorcontrib><creatorcontrib>Tsao, Ming-sound</creatorcontrib><creatorcontrib>Iovanna, Juan L</creatorcontrib><creatorcontrib>Jurisicova, Andrea</creatorcontrib><creatorcontrib>Melino, Gerry</creatorcontrib><creatorcontrib>Mak, Tak W</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomasini, Richard</au><au>Tsuchihara, Katsuya</au><au>Tsuda, Chiharu</au><au>Lau, Suzanne K</au><au>Wilhelm, Margareta</au><au>Ruffini, Alessandro</au><au>Tsao, Ming-sound</au><au>Iovanna, Juan L</au><au>Jurisicova, Andrea</au><au>Melino, Gerry</au><au>Mak, Tak W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-01-20</date><risdate>2009</risdate><volume>106</volume><issue>3</issue><spage>797</spage><epage>802</epage><pages>797-802</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The role of various p73 isoforms in tumorigenesis has been controversial. However, as we have recently shown, the generation of TAp73-deficient (TAp73⁻/⁻) mice reveals that TAp73 isoforms exert tumor-suppressive functions, indicating an emerging role for Trp-73 in the maintenance of genomic stability. Unlike mice lacking all p73 isoforms, TAp73⁻/⁻ mice show a high incidence of spontaneous tumors. Moreover, TAp73⁻/⁻ mice are infertile and produce oocytes exhibiting spindle abnormalities. These data suggest a link between TAp73 activities and the common molecular machinery underlying meiosis and mitosis. Previous studies have indicated that the spindle assembly checkpoint (SAC) complex, whose activation leads to mitotic arrest, also regulates meiosis. In this study, we demonstrate in murine and human cells that TAp73 is able to interact directly with several partners of the SAC complex (Bub1, Bub3, and BubR1). We also show that TAp73 is involved in SAC protein localization and activities. Moreover, we show that decreased TAp73 expression correlates with increases of SAC protein expression in patients with lung cancer. Our results establish TAp73 as a regulator of SAC responses and indicate that TAp73 loss can lead to mitotic arrest defects. Our data suggest that SAC impairment in the absence of functional TAp73 could explain the genomic instability and increased aneuploidy observed in TAp73-deficient cells.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19139399</pmid><doi>10.1073/pnas.0812096106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2009-01, Vol.106 (3), p.797-802 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_0812096106 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Aneuploidy Animals Biological Sciences Cancer Cell Cycle Proteins Cell division Cells Chromosomal Instability Chromosomes Female Gene expression Genetic mutation HeLa cells Humans Lung neoplasms Mice Mitotic spindle apparatus Nuclear Proteins - analysis Nuclear Proteins - physiology Oocytes Protein isoforms Protein-Serine-Threonine Kinases - analysis Protein-Serine-Threonine Kinases - physiology Proteins Rodents Spindle Apparatus - chemistry Spindle Apparatus - physiology Studies Tumors |
title | TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TAp73%20regulates%20the%20spindle%20assembly%20checkpoint%20by%20modulating%20BubR1%20activity&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Tomasini,%20Richard&rft.date=2009-01-20&rft.volume=106&rft.issue=3&rft.spage=797&rft.epage=802&rft.pages=797-802&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0812096106&rft_dat=%3Cjstor_cross%3E40254751%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201408235&rft_id=info:pmid/19139399&rft_jstor_id=40254751&rfr_iscdi=true |