Mycobacterium tuberculosis DosS Is a Redox Sensor and DosT Is a Hypoxia Sensor

A fundamental challenge to the study of oxidative stress responses of Mycobacterium tuberculosis (Mtb) is to understand how the protective host molecules are sensed and relayed to control bacilli gene expression. The genetic response of Mtb to hypoxia and NO is controlled by the sensor kinases DosS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-07, Vol.104 (28), p.11568-11573
Hauptverfasser: Kumar, Ashwani, Toledo, Jose C., Patel, Rakesh P., Lancaster, Jack R., Steyn, Adrie J. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11573
container_issue 28
container_start_page 11568
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Kumar, Ashwani
Toledo, Jose C.
Patel, Rakesh P.
Lancaster, Jack R.
Steyn, Adrie J. C.
description A fundamental challenge to the study of oxidative stress responses of Mycobacterium tuberculosis (Mtb) is to understand how the protective host molecules are sensed and relayed to control bacilli gene expression. The genetic response of Mtb to hypoxia and NO is controlled by the sensor kinases DosS and DosT and the response regulator DosR through activation of the dormancy/NO (Dos) regulon. However, the regulatory ligands of DosS and DosT and the mechanism of signal sensing were unknown. Here, we show that both DosS and DosT bind heme as a prosthetic group and that DosS is rapidly autooxidized to attain the met (Fe³⁺) form, whereas DosT exists in the O₂-bound (oxy) form. EPR and UV-visible spectroscopy analysis showed that O₂, NO, and CO are ligands of DosS and DosT. Importantly, we demonstrate that the oxidation or ligation state of the heme iron modulates DosS and DosT autokinase activity and that ferrous DosS, and deoxy DosT, show significantly increased autokinase activity compared with met DosS and oxy DosT. Our data provide direct proof that DosS functions as a redox sensor, whereas DosT functions as a hypoxia sensor, and that O₂, NO, and CO are modulatory ligands of DosS and DosT. Finally, we identified a third potential dormancy signal, CO, that induces the Mtb Dos regulon. We conclude that Mtb has evolved finely tuned redox and hypoxia-mediated sensing strategies for detecting O₂, NO, and CO. Data presented here establish a paradigm for understanding the mechanism of bacilli persistence.
doi_str_mv 10.1073/pnas.0705054104
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0705054104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25436159</jstor_id><sourcerecordid>25436159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-4c1bf4b701c95ded24d1fe5b68ec20f3f608c5b77be398cf4d381b37ab1ffcb83</originalsourceid><addsrcrecordid>eNqF0bFv1DAUBnALgehRmJlAEUMlhrTvxXZsL0ioBVqpgETLbNmODTnl4qudoLv_nhwX9YClk4fv9z7ZfoS8RDhFEPRs3Zt8CgI4cIbAHpEFgsKyZgoekwVAJUrJKnZEnuW8BADFJTwlRyhqULRWC_Ll89ZFa9zgUzuuimG0Prmxi7nNxUXMN8VVLkzxzTdxU9z4PsdUmL7ZRbf76HK7jpvWzOFz8iSYLvsX83lMvn_8cHt-WV5__XR1_v66dJzCUDKHNjArAJ3ijW8q1mDw3NbSuwoCDTVIx60Q1lMlXWANlWipMBZDcFbSY_Ju37se7co3zvdDMp1ep3Zl0lZH0-p_k779qX_EXxoV1KKiU8HJXJDi3ejzoFdtdr7rTO_jmLUAgYIjexBWQCtB_zS--Q8u45j66RcmgxRRSZjQ2R65FHNOPtxfGUHvNqp3G9WHjU4Tr_9-6cHPK5zA2xnsJg91TFdSI_Ja6jB23eA3w2SLB-xEXu3JMg8x3ZuKM1ojV_Q3SLm_CQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201311980</pqid></control><display><type>article</type><title>Mycobacterium tuberculosis DosS Is a Redox Sensor and DosT Is a Hypoxia Sensor</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kumar, Ashwani ; Toledo, Jose C. ; Patel, Rakesh P. ; Lancaster, Jack R. ; Steyn, Adrie J. C.</creator><creatorcontrib>Kumar, Ashwani ; Toledo, Jose C. ; Patel, Rakesh P. ; Lancaster, Jack R. ; Steyn, Adrie J. C.</creatorcontrib><description>A fundamental challenge to the study of oxidative stress responses of Mycobacterium tuberculosis (Mtb) is to understand how the protective host molecules are sensed and relayed to control bacilli gene expression. The genetic response of Mtb to hypoxia and NO is controlled by the sensor kinases DosS and DosT and the response regulator DosR through activation of the dormancy/NO (Dos) regulon. However, the regulatory ligands of DosS and DosT and the mechanism of signal sensing were unknown. Here, we show that both DosS and DosT bind heme as a prosthetic group and that DosS is rapidly autooxidized to attain the met (Fe³⁺) form, whereas DosT exists in the O₂-bound (oxy) form. EPR and UV-visible spectroscopy analysis showed that O₂, NO, and CO are ligands of DosS and DosT. Importantly, we demonstrate that the oxidation or ligation state of the heme iron modulates DosS and DosT autokinase activity and that ferrous DosS, and deoxy DosT, show significantly increased autokinase activity compared with met DosS and oxy DosT. Our data provide direct proof that DosS functions as a redox sensor, whereas DosT functions as a hypoxia sensor, and that O₂, NO, and CO are modulatory ligands of DosS and DosT. Finally, we identified a third potential dormancy signal, CO, that induces the Mtb Dos regulon. We conclude that Mtb has evolved finely tuned redox and hypoxia-mediated sensing strategies for detecting O₂, NO, and CO. Data presented here establish a paradigm for understanding the mechanism of bacilli persistence.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0705054104</identifier><identifier>PMID: 17609369</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Absorption spectra ; Anaerobiosis ; Bacteria ; Bacterial Proteins - metabolism ; Bacterial Proteins - physiology ; Biochemistry ; Biological Sciences ; Carbon Monoxide - metabolism ; Gene expression ; Hemeproteins - metabolism ; Hemeproteins - physiology ; Humans ; Hypoxia ; Ligands ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - metabolism ; Mycobacterium tuberculosis - pathogenicity ; Mycobacterium tuberculosis - physiology ; Nitric oxide ; Nitric Oxide - metabolism ; Oxidation-Reduction ; Oxygen ; Oxygen - metabolism ; Oxygen - physiology ; Protamine Kinase - metabolism ; Protamine Kinase - physiology ; Regulon ; Sensors ; Spectroscopy ; Ultraviolet spectroscopy</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-07, Vol.104 (28), p.11568-11573</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 10, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-4c1bf4b701c95ded24d1fe5b68ec20f3f608c5b77be398cf4d381b37ab1ffcb83</citedby><cites>FETCH-LOGICAL-c530t-4c1bf4b701c95ded24d1fe5b68ec20f3f608c5b77be398cf4d381b37ab1ffcb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/28.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25436159$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25436159$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17609369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Ashwani</creatorcontrib><creatorcontrib>Toledo, Jose C.</creatorcontrib><creatorcontrib>Patel, Rakesh P.</creatorcontrib><creatorcontrib>Lancaster, Jack R.</creatorcontrib><creatorcontrib>Steyn, Adrie J. C.</creatorcontrib><title>Mycobacterium tuberculosis DosS Is a Redox Sensor and DosT Is a Hypoxia Sensor</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A fundamental challenge to the study of oxidative stress responses of Mycobacterium tuberculosis (Mtb) is to understand how the protective host molecules are sensed and relayed to control bacilli gene expression. The genetic response of Mtb to hypoxia and NO is controlled by the sensor kinases DosS and DosT and the response regulator DosR through activation of the dormancy/NO (Dos) regulon. However, the regulatory ligands of DosS and DosT and the mechanism of signal sensing were unknown. Here, we show that both DosS and DosT bind heme as a prosthetic group and that DosS is rapidly autooxidized to attain the met (Fe³⁺) form, whereas DosT exists in the O₂-bound (oxy) form. EPR and UV-visible spectroscopy analysis showed that O₂, NO, and CO are ligands of DosS and DosT. Importantly, we demonstrate that the oxidation or ligation state of the heme iron modulates DosS and DosT autokinase activity and that ferrous DosS, and deoxy DosT, show significantly increased autokinase activity compared with met DosS and oxy DosT. Our data provide direct proof that DosS functions as a redox sensor, whereas DosT functions as a hypoxia sensor, and that O₂, NO, and CO are modulatory ligands of DosS and DosT. Finally, we identified a third potential dormancy signal, CO, that induces the Mtb Dos regulon. We conclude that Mtb has evolved finely tuned redox and hypoxia-mediated sensing strategies for detecting O₂, NO, and CO. Data presented here establish a paradigm for understanding the mechanism of bacilli persistence.</description><subject>Absorption spectra</subject><subject>Anaerobiosis</subject><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Proteins - physiology</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Carbon Monoxide - metabolism</subject><subject>Gene expression</subject><subject>Hemeproteins - metabolism</subject><subject>Hemeproteins - physiology</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Ligands</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Mycobacterium tuberculosis - pathogenicity</subject><subject>Mycobacterium tuberculosis - physiology</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Oxygen - physiology</subject><subject>Protamine Kinase - metabolism</subject><subject>Protamine Kinase - physiology</subject><subject>Regulon</subject><subject>Sensors</subject><subject>Spectroscopy</subject><subject>Ultraviolet spectroscopy</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0bFv1DAUBnALgehRmJlAEUMlhrTvxXZsL0ioBVqpgETLbNmODTnl4qudoLv_nhwX9YClk4fv9z7ZfoS8RDhFEPRs3Zt8CgI4cIbAHpEFgsKyZgoekwVAJUrJKnZEnuW8BADFJTwlRyhqULRWC_Ll89ZFa9zgUzuuimG0Prmxi7nNxUXMN8VVLkzxzTdxU9z4PsdUmL7ZRbf76HK7jpvWzOFz8iSYLvsX83lMvn_8cHt-WV5__XR1_v66dJzCUDKHNjArAJ3ijW8q1mDw3NbSuwoCDTVIx60Q1lMlXWANlWipMBZDcFbSY_Ju37se7co3zvdDMp1ep3Zl0lZH0-p_k779qX_EXxoV1KKiU8HJXJDi3ejzoFdtdr7rTO_jmLUAgYIjexBWQCtB_zS--Q8u45j66RcmgxRRSZjQ2R65FHNOPtxfGUHvNqp3G9WHjU4Tr_9-6cHPK5zA2xnsJg91TFdSI_Ja6jB23eA3w2SLB-xEXu3JMg8x3ZuKM1ojV_Q3SLm_CQ</recordid><startdate>20070710</startdate><enddate>20070710</enddate><creator>Kumar, Ashwani</creator><creator>Toledo, Jose C.</creator><creator>Patel, Rakesh P.</creator><creator>Lancaster, Jack R.</creator><creator>Steyn, Adrie J. C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070710</creationdate><title>Mycobacterium tuberculosis DosS Is a Redox Sensor and DosT Is a Hypoxia Sensor</title><author>Kumar, Ashwani ; Toledo, Jose C. ; Patel, Rakesh P. ; Lancaster, Jack R. ; Steyn, Adrie J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-4c1bf4b701c95ded24d1fe5b68ec20f3f608c5b77be398cf4d381b37ab1ffcb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Absorption spectra</topic><topic>Anaerobiosis</topic><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Proteins - physiology</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Carbon Monoxide - metabolism</topic><topic>Gene expression</topic><topic>Hemeproteins - metabolism</topic><topic>Hemeproteins - physiology</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Ligands</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Mycobacterium tuberculosis - pathogenicity</topic><topic>Mycobacterium tuberculosis - physiology</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Oxygen - physiology</topic><topic>Protamine Kinase - metabolism</topic><topic>Protamine Kinase - physiology</topic><topic>Regulon</topic><topic>Sensors</topic><topic>Spectroscopy</topic><topic>Ultraviolet spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Ashwani</creatorcontrib><creatorcontrib>Toledo, Jose C.</creatorcontrib><creatorcontrib>Patel, Rakesh P.</creatorcontrib><creatorcontrib>Lancaster, Jack R.</creatorcontrib><creatorcontrib>Steyn, Adrie J. C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Ashwani</au><au>Toledo, Jose C.</au><au>Patel, Rakesh P.</au><au>Lancaster, Jack R.</au><au>Steyn, Adrie J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mycobacterium tuberculosis DosS Is a Redox Sensor and DosT Is a Hypoxia Sensor</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-07-10</date><risdate>2007</risdate><volume>104</volume><issue>28</issue><spage>11568</spage><epage>11573</epage><pages>11568-11573</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A fundamental challenge to the study of oxidative stress responses of Mycobacterium tuberculosis (Mtb) is to understand how the protective host molecules are sensed and relayed to control bacilli gene expression. The genetic response of Mtb to hypoxia and NO is controlled by the sensor kinases DosS and DosT and the response regulator DosR through activation of the dormancy/NO (Dos) regulon. However, the regulatory ligands of DosS and DosT and the mechanism of signal sensing were unknown. Here, we show that both DosS and DosT bind heme as a prosthetic group and that DosS is rapidly autooxidized to attain the met (Fe³⁺) form, whereas DosT exists in the O₂-bound (oxy) form. EPR and UV-visible spectroscopy analysis showed that O₂, NO, and CO are ligands of DosS and DosT. Importantly, we demonstrate that the oxidation or ligation state of the heme iron modulates DosS and DosT autokinase activity and that ferrous DosS, and deoxy DosT, show significantly increased autokinase activity compared with met DosS and oxy DosT. Our data provide direct proof that DosS functions as a redox sensor, whereas DosT functions as a hypoxia sensor, and that O₂, NO, and CO are modulatory ligands of DosS and DosT. Finally, we identified a third potential dormancy signal, CO, that induces the Mtb Dos regulon. We conclude that Mtb has evolved finely tuned redox and hypoxia-mediated sensing strategies for detecting O₂, NO, and CO. Data presented here establish a paradigm for understanding the mechanism of bacilli persistence.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17609369</pmid><doi>10.1073/pnas.0705054104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-07, Vol.104 (28), p.11568-11573
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_0705054104
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Absorption spectra
Anaerobiosis
Bacteria
Bacterial Proteins - metabolism
Bacterial Proteins - physiology
Biochemistry
Biological Sciences
Carbon Monoxide - metabolism
Gene expression
Hemeproteins - metabolism
Hemeproteins - physiology
Humans
Hypoxia
Ligands
Mycobacterium tuberculosis
Mycobacterium tuberculosis - metabolism
Mycobacterium tuberculosis - pathogenicity
Mycobacterium tuberculosis - physiology
Nitric oxide
Nitric Oxide - metabolism
Oxidation-Reduction
Oxygen
Oxygen - metabolism
Oxygen - physiology
Protamine Kinase - metabolism
Protamine Kinase - physiology
Regulon
Sensors
Spectroscopy
Ultraviolet spectroscopy
title Mycobacterium tuberculosis DosS Is a Redox Sensor and DosT Is a Hypoxia Sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mycobacterium%20tuberculosis%20DosS%20Is%20a%20Redox%20Sensor%20and%20DosT%20Is%20a%20Hypoxia%20Sensor&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kumar,%20Ashwani&rft.date=2007-07-10&rft.volume=104&rft.issue=28&rft.spage=11568&rft.epage=11573&rft.pages=11568-11573&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0705054104&rft_dat=%3Cjstor_cross%3E25436159%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201311980&rft_id=info:pmid/17609369&rft_jstor_id=25436159&rfr_iscdi=true