Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons

Complex flight maneuvers require a sophisticated system to exploit the optic flow resulting from moving images of the environment projected onto the retina. In the fly's visual course control center, the lobula plate, 10 so-called vertical system (VS) cells are thought to match, with their comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-06, Vol.104 (24), p.10229-10233
Hauptverfasser: Cuntz, Hermann, Haag, Juergen, Forstner, Friedrich, Segev, Idan, Borst, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10233
container_issue 24
container_start_page 10229
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Cuntz, Hermann
Haag, Juergen
Forstner, Friedrich
Segev, Idan
Borst, Alexander
description Complex flight maneuvers require a sophisticated system to exploit the optic flow resulting from moving images of the environment projected onto the retina. In the fly's visual course control center, the lobula plate, 10 so-called vertical system (VS) cells are thought to match, with their complex receptive fields, the optic flow resulting from rotation around different body axes. However, signals of single VS cells are unreliable indicators of such optic flow parameters in the context of their noisy, texture-dependent input from local motion measurements. Here we propose an alternative encoding scheme based on network simulations of biophysically realistic compartmental models of VS cells. The simulations incorporate recent data about the highly selective connectivity between VS cells consisting of an electrical axo-axonal coupling between adjacent cells and a reciprocal inhibition between the most distant cells. We find that this particular wiring performs a linear interpolation between the output signals of VS cells, leading to a robust representation of the axis of rotation even in the presence of textureless patches of the visual surround.
doi_str_mv 10.1073/pnas.0703697104
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0703697104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25435912</jstor_id><sourcerecordid>25435912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-387f1e0fdb4387c55193bd2081cd83a90016a5d810ee7af1876b6a6f253abc9f3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEokvhzAmIOCBxSDtjO4l9qYQqvqRKSEDPlpPYS1ZZO9hJ2_33TLSrLnDpwRrb7zOv5iPLXiKcIdT8fPQmnUENvFI1gniUrRAUFpVQ8DhbAbC6kIKJk-xZShsAUKWEp9kJ1mWJ9FplzffQzGnK29D1fp0Hl7sh3Baut0OXjyaarZ1sTHmzy81dKOh4M-RrM-ab2bdTHzxpdrq11lPmLr_p00xA7ynL2zmS_jx74syQ7ItDPM2uP338efmluPr2-evlh6uiLUsxFVzWDi24rhF0pT9UvOkYSGw7yY0CwMqUnUSwtjYOZV01lakcK7lpWuX4aXax9x3nZmu71vopmkGPsd-auNPB9Ppfxfe_9DrcaJSyotmQwbuDQQy_Z5smve1Ta4fBeBvmpGuoUAmlHgRRVYpRfQS-_Q_chDnSBJNmgBwZ-RF0vofaGFKK1t2XjKCXLetly_q4Zcp4_XenR_6wVgLyA7BkHu2EZoICYwvy_gFEu3kYJns3Eftqz27SFOI9zErBS4WM9Dd73ZmgzTr2SV__WBoEqCWnovgfchDQIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201312194</pqid></control><display><type>article</type><title>Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cuntz, Hermann ; Haag, Juergen ; Forstner, Friedrich ; Segev, Idan ; Borst, Alexander</creator><creatorcontrib>Cuntz, Hermann ; Haag, Juergen ; Forstner, Friedrich ; Segev, Idan ; Borst, Alexander</creatorcontrib><description>Complex flight maneuvers require a sophisticated system to exploit the optic flow resulting from moving images of the environment projected onto the retina. In the fly's visual course control center, the lobula plate, 10 so-called vertical system (VS) cells are thought to match, with their complex receptive fields, the optic flow resulting from rotation around different body axes. However, signals of single VS cells are unreliable indicators of such optic flow parameters in the context of their noisy, texture-dependent input from local motion measurements. Here we propose an alternative encoding scheme based on network simulations of biophysically realistic compartmental models of VS cells. The simulations incorporate recent data about the highly selective connectivity between VS cells consisting of an electrical axo-axonal coupling between adjacent cells and a reciprocal inhibition between the most distant cells. We find that this particular wiring performs a linear interpolation between the output signals of VS cells, leading to a robust representation of the axis of rotation even in the presence of textureless patches of the visual surround.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0703697104</identifier><identifier>PMID: 17551009</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Axons ; Axons - physiology ; Biological Sciences ; Cells ; Computer Simulation ; Dendrites ; Diptera - physiology ; Electric current ; Gap Junctions - physiology ; Image contrast ; Insects ; Interneurons - physiology ; Interpolation ; Kinetics ; Modeling ; Models, Biological ; Neuroscience ; Neurosciences ; Optics ; Rotation ; Synapses ; Visual fields ; Visual Fields - physiology ; Visual Pathways - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (24), p.10229-10233</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 12, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-387f1e0fdb4387c55193bd2081cd83a90016a5d810ee7af1876b6a6f253abc9f3</citedby><cites>FETCH-LOGICAL-c554t-387f1e0fdb4387c55193bd2081cd83a90016a5d810ee7af1876b6a6f253abc9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25435912$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25435912$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17551009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cuntz, Hermann</creatorcontrib><creatorcontrib>Haag, Juergen</creatorcontrib><creatorcontrib>Forstner, Friedrich</creatorcontrib><creatorcontrib>Segev, Idan</creatorcontrib><creatorcontrib>Borst, Alexander</creatorcontrib><title>Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Complex flight maneuvers require a sophisticated system to exploit the optic flow resulting from moving images of the environment projected onto the retina. In the fly's visual course control center, the lobula plate, 10 so-called vertical system (VS) cells are thought to match, with their complex receptive fields, the optic flow resulting from rotation around different body axes. However, signals of single VS cells are unreliable indicators of such optic flow parameters in the context of their noisy, texture-dependent input from local motion measurements. Here we propose an alternative encoding scheme based on network simulations of biophysically realistic compartmental models of VS cells. The simulations incorporate recent data about the highly selective connectivity between VS cells consisting of an electrical axo-axonal coupling between adjacent cells and a reciprocal inhibition between the most distant cells. We find that this particular wiring performs a linear interpolation between the output signals of VS cells, leading to a robust representation of the axis of rotation even in the presence of textureless patches of the visual surround.</description><subject>Animals</subject><subject>Axons</subject><subject>Axons - physiology</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>Computer Simulation</subject><subject>Dendrites</subject><subject>Diptera - physiology</subject><subject>Electric current</subject><subject>Gap Junctions - physiology</subject><subject>Image contrast</subject><subject>Insects</subject><subject>Interneurons - physiology</subject><subject>Interpolation</subject><subject>Kinetics</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Optics</subject><subject>Rotation</subject><subject>Synapses</subject><subject>Visual fields</subject><subject>Visual Fields - physiology</subject><subject>Visual Pathways - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEokvhzAmIOCBxSDtjO4l9qYQqvqRKSEDPlpPYS1ZZO9hJ2_33TLSrLnDpwRrb7zOv5iPLXiKcIdT8fPQmnUENvFI1gniUrRAUFpVQ8DhbAbC6kIKJk-xZShsAUKWEp9kJ1mWJ9FplzffQzGnK29D1fp0Hl7sh3Baut0OXjyaarZ1sTHmzy81dKOh4M-RrM-ab2bdTHzxpdrq11lPmLr_p00xA7ynL2zmS_jx74syQ7ItDPM2uP338efmluPr2-evlh6uiLUsxFVzWDi24rhF0pT9UvOkYSGw7yY0CwMqUnUSwtjYOZV01lakcK7lpWuX4aXax9x3nZmu71vopmkGPsd-auNPB9Ppfxfe_9DrcaJSyotmQwbuDQQy_Z5smve1Ta4fBeBvmpGuoUAmlHgRRVYpRfQS-_Q_chDnSBJNmgBwZ-RF0vofaGFKK1t2XjKCXLetly_q4Zcp4_XenR_6wVgLyA7BkHu2EZoICYwvy_gFEu3kYJns3Eftqz27SFOI9zErBS4WM9Dd73ZmgzTr2SV__WBoEqCWnovgfchDQIg</recordid><startdate>20070612</startdate><enddate>20070612</enddate><creator>Cuntz, Hermann</creator><creator>Haag, Juergen</creator><creator>Forstner, Friedrich</creator><creator>Segev, Idan</creator><creator>Borst, Alexander</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070612</creationdate><title>Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons</title><author>Cuntz, Hermann ; Haag, Juergen ; Forstner, Friedrich ; Segev, Idan ; Borst, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-387f1e0fdb4387c55193bd2081cd83a90016a5d810ee7af1876b6a6f253abc9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Axons</topic><topic>Axons - physiology</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>Computer Simulation</topic><topic>Dendrites</topic><topic>Diptera - physiology</topic><topic>Electric current</topic><topic>Gap Junctions - physiology</topic><topic>Image contrast</topic><topic>Insects</topic><topic>Interneurons - physiology</topic><topic>Interpolation</topic><topic>Kinetics</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Optics</topic><topic>Rotation</topic><topic>Synapses</topic><topic>Visual fields</topic><topic>Visual Fields - physiology</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cuntz, Hermann</creatorcontrib><creatorcontrib>Haag, Juergen</creatorcontrib><creatorcontrib>Forstner, Friedrich</creatorcontrib><creatorcontrib>Segev, Idan</creatorcontrib><creatorcontrib>Borst, Alexander</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cuntz, Hermann</au><au>Haag, Juergen</au><au>Forstner, Friedrich</au><au>Segev, Idan</au><au>Borst, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-06-12</date><risdate>2007</risdate><volume>104</volume><issue>24</issue><spage>10229</spage><epage>10233</epage><pages>10229-10233</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Complex flight maneuvers require a sophisticated system to exploit the optic flow resulting from moving images of the environment projected onto the retina. In the fly's visual course control center, the lobula plate, 10 so-called vertical system (VS) cells are thought to match, with their complex receptive fields, the optic flow resulting from rotation around different body axes. However, signals of single VS cells are unreliable indicators of such optic flow parameters in the context of their noisy, texture-dependent input from local motion measurements. Here we propose an alternative encoding scheme based on network simulations of biophysically realistic compartmental models of VS cells. The simulations incorporate recent data about the highly selective connectivity between VS cells consisting of an electrical axo-axonal coupling between adjacent cells and a reciprocal inhibition between the most distant cells. We find that this particular wiring performs a linear interpolation between the output signals of VS cells, leading to a robust representation of the axis of rotation even in the presence of textureless patches of the visual surround.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17551009</pmid><doi>10.1073/pnas.0703697104</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (24), p.10229-10233
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_0703697104
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Axons
Axons - physiology
Biological Sciences
Cells
Computer Simulation
Dendrites
Diptera - physiology
Electric current
Gap Junctions - physiology
Image contrast
Insects
Interneurons - physiology
Interpolation
Kinetics
Modeling
Models, Biological
Neuroscience
Neurosciences
Optics
Rotation
Synapses
Visual fields
Visual Fields - physiology
Visual Pathways - physiology
title Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20coding%20of%20flow-field%20parameters%20by%20axo-axonal%20gap%20junctions%20between%20fly%20visual%20interneurons&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cuntz,%20Hermann&rft.date=2007-06-12&rft.volume=104&rft.issue=24&rft.spage=10229&rft.epage=10233&rft.pages=10229-10233&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0703697104&rft_dat=%3Cjstor_cross%3E25435912%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201312194&rft_id=info:pmid/17551009&rft_jstor_id=25435912&rfr_iscdi=true