Faceting Ionic Shells into Icosahedra via Electrostatics
Shells of various viruses and other closed packed structures with spherical topology exhibit icosahedral symmetry because the surface of a sphere cannot be tiled without defects, and icosahedral symmetry yields the most symmetric configuration with the minimum number of defects. Icosahedral symmetry...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-11, Vol.104 (47), p.18382-18386 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18386 |
---|---|
container_issue | 47 |
container_start_page | 18382 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | Vernizzi, Graziano de la Cruz, Monica Olvera |
description | Shells of various viruses and other closed packed structures with spherical topology exhibit icosahedral symmetry because the surface of a sphere cannot be tiled without defects, and icosahedral symmetry yields the most symmetric configuration with the minimum number of defects. Icosahedral symmetry is different from icosahedral-shaped structures, which include some large viruses, cationic-anionic vesicles, and fullerenes. We present a faceting mechanism of ionic shells into icosahedral shapes that breaks icosahedral symmetry resulting from different arrangements of the charged components among the facets. These self-organized ionic structures may favor the formation of flat domains on curved surfaces. We show that icosahedral shapes without rotational symmetry can have lower energy than spheres with icosahedral symmetry caused by preferred bending directions in the planar ionic lattice. The ability to create icosahedral shapes without icosahedral symmetry may lead to the design of new functional materials. The electrostatically driven faceting mechanism we present here suggests that we can design faceted polyhedra with diverse symmetries by coassembling oppositely charged molecules of different stoichiometric ratios. |
doi_str_mv | 10.1073/pnas.0703431104 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0703431104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25450433</jstor_id><sourcerecordid>25450433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-173d492b1a6d6d238fe791bb01b8bd9bdecc2e394e681f17a0284f6c870445833</originalsourceid><addsrcrecordid>eNqF0UFrFDEUB_Agil2rZ0_K0IPgYdr3kswkuQiltLpQ6KF6DplMpptldrImmaLf3iy7dNVLTznk9x7vvT8h7xHOEQS72E4mnYMAxhki8BdkgaCwbrmCl2QBQEUtOeUn5E1KawBQjYTX5AQlAFOMLYi8MdZlPz1UyzB5W92v3Dimyk85VEsbklm5Pprq0ZvqenQ2x5Cyyd6mt-TVYMbk3h3eU_Lj5vr71bf69u7r8urytrYNg1yjYD1XtEPT9m1PmRycUNh1gJ3setX1zlrqmOKulTigMEAlH1orBXDeSMZOyZd93-3cbVxv3ZSjGfU2-o2Jv3UwXv_7M_mVfgiPmiJHIdvS4NOhQQw_Z5ey3vhky5ZmcmFOupUNVxzUsxCVlBwpLfDsP7gOc5zKFTQFLLsw5AVd7JEtJ0vRDU8jI-hddnqXnT5mVyo-_r3p0R_CKqA6gF3lsR3XXBTF5G60z88QPczjmN2vXOyHvV2nHOITpg1vyjSM_QHe67Zi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201394314</pqid></control><display><type>article</type><title>Faceting Ionic Shells into Icosahedra via Electrostatics</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Vernizzi, Graziano ; de la Cruz, Monica Olvera</creator><creatorcontrib>Vernizzi, Graziano ; de la Cruz, Monica Olvera</creatorcontrib><description>Shells of various viruses and other closed packed structures with spherical topology exhibit icosahedral symmetry because the surface of a sphere cannot be tiled without defects, and icosahedral symmetry yields the most symmetric configuration with the minimum number of defects. Icosahedral symmetry is different from icosahedral-shaped structures, which include some large viruses, cationic-anionic vesicles, and fullerenes. We present a faceting mechanism of ionic shells into icosahedral shapes that breaks icosahedral symmetry resulting from different arrangements of the charged components among the facets. These self-organized ionic structures may favor the formation of flat domains on curved surfaces. We show that icosahedral shapes without rotational symmetry can have lower energy than spheres with icosahedral symmetry caused by preferred bending directions in the planar ionic lattice. The ability to create icosahedral shapes without icosahedral symmetry may lead to the design of new functional materials. The electrostatically driven faceting mechanism we present here suggests that we can design faceted polyhedra with diverse symmetries by coassembling oppositely charged molecules of different stoichiometric ratios.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0703431104</identifier><identifier>PMID: 18003933</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bending ; Buckling ; Crystal lattices ; Electrostatics ; Emulsions ; Icosahedrons ; Ions ; Membranes ; Molecules ; Physical Sciences ; Polygons ; Symmetry ; Triangulation ; Vertices ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-11, Vol.104 (47), p.18382-18386</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 20, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-173d492b1a6d6d238fe791bb01b8bd9bdecc2e394e681f17a0284f6c870445833</citedby><cites>FETCH-LOGICAL-c530t-173d492b1a6d6d238fe791bb01b8bd9bdecc2e394e681f17a0284f6c870445833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/47.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25450433$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25450433$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18003933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vernizzi, Graziano</creatorcontrib><creatorcontrib>de la Cruz, Monica Olvera</creatorcontrib><title>Faceting Ionic Shells into Icosahedra via Electrostatics</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Shells of various viruses and other closed packed structures with spherical topology exhibit icosahedral symmetry because the surface of a sphere cannot be tiled without defects, and icosahedral symmetry yields the most symmetric configuration with the minimum number of defects. Icosahedral symmetry is different from icosahedral-shaped structures, which include some large viruses, cationic-anionic vesicles, and fullerenes. We present a faceting mechanism of ionic shells into icosahedral shapes that breaks icosahedral symmetry resulting from different arrangements of the charged components among the facets. These self-organized ionic structures may favor the formation of flat domains on curved surfaces. We show that icosahedral shapes without rotational symmetry can have lower energy than spheres with icosahedral symmetry caused by preferred bending directions in the planar ionic lattice. The ability to create icosahedral shapes without icosahedral symmetry may lead to the design of new functional materials. The electrostatically driven faceting mechanism we present here suggests that we can design faceted polyhedra with diverse symmetries by coassembling oppositely charged molecules of different stoichiometric ratios.</description><subject>Bending</subject><subject>Buckling</subject><subject>Crystal lattices</subject><subject>Electrostatics</subject><subject>Emulsions</subject><subject>Icosahedrons</subject><subject>Ions</subject><subject>Membranes</subject><subject>Molecules</subject><subject>Physical Sciences</subject><subject>Polygons</subject><subject>Symmetry</subject><subject>Triangulation</subject><subject>Vertices</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqF0UFrFDEUB_Agil2rZ0_K0IPgYdr3kswkuQiltLpQ6KF6DplMpptldrImmaLf3iy7dNVLTznk9x7vvT8h7xHOEQS72E4mnYMAxhki8BdkgaCwbrmCl2QBQEUtOeUn5E1KawBQjYTX5AQlAFOMLYi8MdZlPz1UyzB5W92v3Dimyk85VEsbklm5Pprq0ZvqenQ2x5Cyyd6mt-TVYMbk3h3eU_Lj5vr71bf69u7r8urytrYNg1yjYD1XtEPT9m1PmRycUNh1gJ3setX1zlrqmOKulTigMEAlH1orBXDeSMZOyZd93-3cbVxv3ZSjGfU2-o2Jv3UwXv_7M_mVfgiPmiJHIdvS4NOhQQw_Z5ey3vhky5ZmcmFOupUNVxzUsxCVlBwpLfDsP7gOc5zKFTQFLLsw5AVd7JEtJ0vRDU8jI-hddnqXnT5mVyo-_r3p0R_CKqA6gF3lsR3XXBTF5G60z88QPczjmN2vXOyHvV2nHOITpg1vyjSM_QHe67Zi</recordid><startdate>20071120</startdate><enddate>20071120</enddate><creator>Vernizzi, Graziano</creator><creator>de la Cruz, Monica Olvera</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071120</creationdate><title>Faceting Ionic Shells into Icosahedra via Electrostatics</title><author>Vernizzi, Graziano ; de la Cruz, Monica Olvera</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-173d492b1a6d6d238fe791bb01b8bd9bdecc2e394e681f17a0284f6c870445833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bending</topic><topic>Buckling</topic><topic>Crystal lattices</topic><topic>Electrostatics</topic><topic>Emulsions</topic><topic>Icosahedrons</topic><topic>Ions</topic><topic>Membranes</topic><topic>Molecules</topic><topic>Physical Sciences</topic><topic>Polygons</topic><topic>Symmetry</topic><topic>Triangulation</topic><topic>Vertices</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vernizzi, Graziano</creatorcontrib><creatorcontrib>de la Cruz, Monica Olvera</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vernizzi, Graziano</au><au>de la Cruz, Monica Olvera</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faceting Ionic Shells into Icosahedra via Electrostatics</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-11-20</date><risdate>2007</risdate><volume>104</volume><issue>47</issue><spage>18382</spage><epage>18386</epage><pages>18382-18386</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Shells of various viruses and other closed packed structures with spherical topology exhibit icosahedral symmetry because the surface of a sphere cannot be tiled without defects, and icosahedral symmetry yields the most symmetric configuration with the minimum number of defects. Icosahedral symmetry is different from icosahedral-shaped structures, which include some large viruses, cationic-anionic vesicles, and fullerenes. We present a faceting mechanism of ionic shells into icosahedral shapes that breaks icosahedral symmetry resulting from different arrangements of the charged components among the facets. These self-organized ionic structures may favor the formation of flat domains on curved surfaces. We show that icosahedral shapes without rotational symmetry can have lower energy than spheres with icosahedral symmetry caused by preferred bending directions in the planar ionic lattice. The ability to create icosahedral shapes without icosahedral symmetry may lead to the design of new functional materials. The electrostatically driven faceting mechanism we present here suggests that we can design faceted polyhedra with diverse symmetries by coassembling oppositely charged molecules of different stoichiometric ratios.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18003933</pmid><doi>10.1073/pnas.0703431104</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-11, Vol.104 (47), p.18382-18386 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_0703431104 |
source | PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Bending Buckling Crystal lattices Electrostatics Emulsions Icosahedrons Ions Membranes Molecules Physical Sciences Polygons Symmetry Triangulation Vertices Viruses |
title | Faceting Ionic Shells into Icosahedra via Electrostatics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faceting%20Ionic%20Shells%20into%20Icosahedra%20via%20Electrostatics&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Vernizzi,%20Graziano&rft.date=2007-11-20&rft.volume=104&rft.issue=47&rft.spage=18382&rft.epage=18386&rft.pages=18382-18386&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0703431104&rft_dat=%3Cjstor_cross%3E25450433%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201394314&rft_id=info:pmid/18003933&rft_jstor_id=25450433&rfr_iscdi=true |