Faceting Ionic Shells into Icosahedra via Electrostatics

Shells of various viruses and other closed packed structures with spherical topology exhibit icosahedral symmetry because the surface of a sphere cannot be tiled without defects, and icosahedral symmetry yields the most symmetric configuration with the minimum number of defects. Icosahedral symmetry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-11, Vol.104 (47), p.18382-18386
Hauptverfasser: Vernizzi, Graziano, de la Cruz, Monica Olvera
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18386
container_issue 47
container_start_page 18382
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Vernizzi, Graziano
de la Cruz, Monica Olvera
description Shells of various viruses and other closed packed structures with spherical topology exhibit icosahedral symmetry because the surface of a sphere cannot be tiled without defects, and icosahedral symmetry yields the most symmetric configuration with the minimum number of defects. Icosahedral symmetry is different from icosahedral-shaped structures, which include some large viruses, cationic-anionic vesicles, and fullerenes. We present a faceting mechanism of ionic shells into icosahedral shapes that breaks icosahedral symmetry resulting from different arrangements of the charged components among the facets. These self-organized ionic structures may favor the formation of flat domains on curved surfaces. We show that icosahedral shapes without rotational symmetry can have lower energy than spheres with icosahedral symmetry caused by preferred bending directions in the planar ionic lattice. The ability to create icosahedral shapes without icosahedral symmetry may lead to the design of new functional materials. The electrostatically driven faceting mechanism we present here suggests that we can design faceted polyhedra with diverse symmetries by coassembling oppositely charged molecules of different stoichiometric ratios.
doi_str_mv 10.1073/pnas.0703431104
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0703431104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25450433</jstor_id><sourcerecordid>25450433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-173d492b1a6d6d238fe791bb01b8bd9bdecc2e394e681f17a0284f6c870445833</originalsourceid><addsrcrecordid>eNqF0UFrFDEUB_Agil2rZ0_K0IPgYdr3kswkuQiltLpQ6KF6DplMpptldrImmaLf3iy7dNVLTznk9x7vvT8h7xHOEQS72E4mnYMAxhki8BdkgaCwbrmCl2QBQEUtOeUn5E1KawBQjYTX5AQlAFOMLYi8MdZlPz1UyzB5W92v3Dimyk85VEsbklm5Pprq0ZvqenQ2x5Cyyd6mt-TVYMbk3h3eU_Lj5vr71bf69u7r8urytrYNg1yjYD1XtEPT9m1PmRycUNh1gJ3setX1zlrqmOKulTigMEAlH1orBXDeSMZOyZd93-3cbVxv3ZSjGfU2-o2Jv3UwXv_7M_mVfgiPmiJHIdvS4NOhQQw_Z5ey3vhky5ZmcmFOupUNVxzUsxCVlBwpLfDsP7gOc5zKFTQFLLsw5AVd7JEtJ0vRDU8jI-hddnqXnT5mVyo-_r3p0R_CKqA6gF3lsR3XXBTF5G60z88QPczjmN2vXOyHvV2nHOITpg1vyjSM_QHe67Zi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201394314</pqid></control><display><type>article</type><title>Faceting Ionic Shells into Icosahedra via Electrostatics</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Vernizzi, Graziano ; de la Cruz, Monica Olvera</creator><creatorcontrib>Vernizzi, Graziano ; de la Cruz, Monica Olvera</creatorcontrib><description>Shells of various viruses and other closed packed structures with spherical topology exhibit icosahedral symmetry because the surface of a sphere cannot be tiled without defects, and icosahedral symmetry yields the most symmetric configuration with the minimum number of defects. Icosahedral symmetry is different from icosahedral-shaped structures, which include some large viruses, cationic-anionic vesicles, and fullerenes. We present a faceting mechanism of ionic shells into icosahedral shapes that breaks icosahedral symmetry resulting from different arrangements of the charged components among the facets. These self-organized ionic structures may favor the formation of flat domains on curved surfaces. We show that icosahedral shapes without rotational symmetry can have lower energy than spheres with icosahedral symmetry caused by preferred bending directions in the planar ionic lattice. The ability to create icosahedral shapes without icosahedral symmetry may lead to the design of new functional materials. The electrostatically driven faceting mechanism we present here suggests that we can design faceted polyhedra with diverse symmetries by coassembling oppositely charged molecules of different stoichiometric ratios.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0703431104</identifier><identifier>PMID: 18003933</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bending ; Buckling ; Crystal lattices ; Electrostatics ; Emulsions ; Icosahedrons ; Ions ; Membranes ; Molecules ; Physical Sciences ; Polygons ; Symmetry ; Triangulation ; Vertices ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-11, Vol.104 (47), p.18382-18386</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 20, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-173d492b1a6d6d238fe791bb01b8bd9bdecc2e394e681f17a0284f6c870445833</citedby><cites>FETCH-LOGICAL-c530t-173d492b1a6d6d238fe791bb01b8bd9bdecc2e394e681f17a0284f6c870445833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/47.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25450433$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25450433$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18003933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vernizzi, Graziano</creatorcontrib><creatorcontrib>de la Cruz, Monica Olvera</creatorcontrib><title>Faceting Ionic Shells into Icosahedra via Electrostatics</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Shells of various viruses and other closed packed structures with spherical topology exhibit icosahedral symmetry because the surface of a sphere cannot be tiled without defects, and icosahedral symmetry yields the most symmetric configuration with the minimum number of defects. Icosahedral symmetry is different from icosahedral-shaped structures, which include some large viruses, cationic-anionic vesicles, and fullerenes. We present a faceting mechanism of ionic shells into icosahedral shapes that breaks icosahedral symmetry resulting from different arrangements of the charged components among the facets. These self-organized ionic structures may favor the formation of flat domains on curved surfaces. We show that icosahedral shapes without rotational symmetry can have lower energy than spheres with icosahedral symmetry caused by preferred bending directions in the planar ionic lattice. The ability to create icosahedral shapes without icosahedral symmetry may lead to the design of new functional materials. The electrostatically driven faceting mechanism we present here suggests that we can design faceted polyhedra with diverse symmetries by coassembling oppositely charged molecules of different stoichiometric ratios.</description><subject>Bending</subject><subject>Buckling</subject><subject>Crystal lattices</subject><subject>Electrostatics</subject><subject>Emulsions</subject><subject>Icosahedrons</subject><subject>Ions</subject><subject>Membranes</subject><subject>Molecules</subject><subject>Physical Sciences</subject><subject>Polygons</subject><subject>Symmetry</subject><subject>Triangulation</subject><subject>Vertices</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqF0UFrFDEUB_Agil2rZ0_K0IPgYdr3kswkuQiltLpQ6KF6DplMpptldrImmaLf3iy7dNVLTznk9x7vvT8h7xHOEQS72E4mnYMAxhki8BdkgaCwbrmCl2QBQEUtOeUn5E1KawBQjYTX5AQlAFOMLYi8MdZlPz1UyzB5W92v3Dimyk85VEsbklm5Pprq0ZvqenQ2x5Cyyd6mt-TVYMbk3h3eU_Lj5vr71bf69u7r8urytrYNg1yjYD1XtEPT9m1PmRycUNh1gJ3setX1zlrqmOKulTigMEAlH1orBXDeSMZOyZd93-3cbVxv3ZSjGfU2-o2Jv3UwXv_7M_mVfgiPmiJHIdvS4NOhQQw_Z5ey3vhky5ZmcmFOupUNVxzUsxCVlBwpLfDsP7gOc5zKFTQFLLsw5AVd7JEtJ0vRDU8jI-hddnqXnT5mVyo-_r3p0R_CKqA6gF3lsR3XXBTF5G60z88QPczjmN2vXOyHvV2nHOITpg1vyjSM_QHe67Zi</recordid><startdate>20071120</startdate><enddate>20071120</enddate><creator>Vernizzi, Graziano</creator><creator>de la Cruz, Monica Olvera</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071120</creationdate><title>Faceting Ionic Shells into Icosahedra via Electrostatics</title><author>Vernizzi, Graziano ; de la Cruz, Monica Olvera</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-173d492b1a6d6d238fe791bb01b8bd9bdecc2e394e681f17a0284f6c870445833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bending</topic><topic>Buckling</topic><topic>Crystal lattices</topic><topic>Electrostatics</topic><topic>Emulsions</topic><topic>Icosahedrons</topic><topic>Ions</topic><topic>Membranes</topic><topic>Molecules</topic><topic>Physical Sciences</topic><topic>Polygons</topic><topic>Symmetry</topic><topic>Triangulation</topic><topic>Vertices</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vernizzi, Graziano</creatorcontrib><creatorcontrib>de la Cruz, Monica Olvera</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vernizzi, Graziano</au><au>de la Cruz, Monica Olvera</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faceting Ionic Shells into Icosahedra via Electrostatics</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-11-20</date><risdate>2007</risdate><volume>104</volume><issue>47</issue><spage>18382</spage><epage>18386</epage><pages>18382-18386</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Shells of various viruses and other closed packed structures with spherical topology exhibit icosahedral symmetry because the surface of a sphere cannot be tiled without defects, and icosahedral symmetry yields the most symmetric configuration with the minimum number of defects. Icosahedral symmetry is different from icosahedral-shaped structures, which include some large viruses, cationic-anionic vesicles, and fullerenes. We present a faceting mechanism of ionic shells into icosahedral shapes that breaks icosahedral symmetry resulting from different arrangements of the charged components among the facets. These self-organized ionic structures may favor the formation of flat domains on curved surfaces. We show that icosahedral shapes without rotational symmetry can have lower energy than spheres with icosahedral symmetry caused by preferred bending directions in the planar ionic lattice. The ability to create icosahedral shapes without icosahedral symmetry may lead to the design of new functional materials. The electrostatically driven faceting mechanism we present here suggests that we can design faceted polyhedra with diverse symmetries by coassembling oppositely charged molecules of different stoichiometric ratios.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18003933</pmid><doi>10.1073/pnas.0703431104</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-11, Vol.104 (47), p.18382-18386
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_0703431104
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Bending
Buckling
Crystal lattices
Electrostatics
Emulsions
Icosahedrons
Ions
Membranes
Molecules
Physical Sciences
Polygons
Symmetry
Triangulation
Vertices
Viruses
title Faceting Ionic Shells into Icosahedra via Electrostatics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faceting%20Ionic%20Shells%20into%20Icosahedra%20via%20Electrostatics&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Vernizzi,%20Graziano&rft.date=2007-11-20&rft.volume=104&rft.issue=47&rft.spage=18382&rft.epage=18386&rft.pages=18382-18386&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0703431104&rft_dat=%3Cjstor_cross%3E25450433%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201394314&rft_id=info:pmid/18003933&rft_jstor_id=25450433&rfr_iscdi=true