Engineering nanoscale order into a designed protein fiber

We have established a designed system comprising two peptides that coassemble to form long, thickened protein fibers in water. This system can be rationally engineered to alter fiber assembly, stability, and morphology. Here, we show that rational mutations to our original peptide designs lead to st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-06, Vol.104 (26), p.10853-10858
Hauptverfasser: Papapostolou, David, Smith, Andrew M, Atkins, Edward D.T, Oliver, Seb J, Ryadnov, Maxim G, Serpell, Louise C, Woolfson, Derek N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10858
container_issue 26
container_start_page 10853
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Papapostolou, David
Smith, Andrew M
Atkins, Edward D.T
Oliver, Seb J
Ryadnov, Maxim G
Serpell, Louise C
Woolfson, Derek N
description We have established a designed system comprising two peptides that coassemble to form long, thickened protein fibers in water. This system can be rationally engineered to alter fiber assembly, stability, and morphology. Here, we show that rational mutations to our original peptide designs lead to structures with a remarkable level of order on the nanoscale that mimics certain natural fibrous assemblies. In the engineered system, the peptides assemble into two-stranded α-helical coiled-coil rods, which pack in axial register in a 3D hexagonal lattice of size 1.824 nm, and with a periodicity of 4.2 nm along the fiber axis. This model is supported by both electron microscopy and x-ray diffraction. Specifically, the fibers display surface striations separated by nanoscale distances that precisely match the 4.2-nm length expected for peptides configured as α-helices as designed. These patterns extend unbroken across the widths (>=50 nm) and lengths (>10 μm) of the fibers. Furthermore, the spacing of the striations can be altered predictably by changing the length of the peptides. These features reflect a high level of internal order within the fibers introduced by the peptide-design process. To our knowledge, this exceptional order, and its persistence along and across the fibers, is unique in a biomimetic system. This work represents a step toward rational bottom-up assembly of nanostructured fibrous biomaterials for potential applications in synthetic biology and nanobiotechnology.
doi_str_mv 10.1073/pnas.0700801104
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0700801104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25436028</jstor_id><sourcerecordid>25436028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-68a49a5f8b12024fadce64628159490b412e8ad29c13b9ac076f50a37d7b05003</originalsourceid><addsrcrecordid>eNqFkc1v1DAUxC0EokvhzAmIOCBxSPue488LEqrKh1SJA_RsOYkTvMrai51U8N_jaFdd4MLpHeY3ozcaQp4jXCDI5nIfbL4ACaAAEdgDskHQWAum4SHZAFBZK0bZGXmS8xYANFfwmJyh5EJKLjdEX4fRB-eSD2MVbIi5s5OrYupdqnyYY2Wr3mU_BtdX-xRn50M1-Nalp-TRYKfsnh3vObn9cP3t6lN98-Xj56v3N3XHOZtroSzTlg-qRQqUDbbvnGCCKuS6fNkypE7ZnuoOm1bbDqQYONhG9rIFDtCck3eH3P3S7lxxhznZyeyT39n0y0Trzd9K8N_NGO8MKo3I14A3x4AUfywuz2bnc-emyQYXl2xQC00powV8_Q-4jUsKpZyhgA2iUE2BLg9Ql2LOyQ33nyCYdROzbmJOmxTHyz8LnPjjCAV4ewRW5ymOGSrKUbwxwzJNs_s5F7b6D1uQFwdkm-eY7hnKWSOAqqK_OuiDjcaOyWdz-3UtCCCVoKXkb8WQskI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201311683</pqid></control><display><type>article</type><title>Engineering nanoscale order into a designed protein fiber</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Papapostolou, David ; Smith, Andrew M ; Atkins, Edward D.T ; Oliver, Seb J ; Ryadnov, Maxim G ; Serpell, Louise C ; Woolfson, Derek N</creator><creatorcontrib>Papapostolou, David ; Smith, Andrew M ; Atkins, Edward D.T ; Oliver, Seb J ; Ryadnov, Maxim G ; Serpell, Louise C ; Woolfson, Derek N</creatorcontrib><description>We have established a designed system comprising two peptides that coassemble to form long, thickened protein fibers in water. This system can be rationally engineered to alter fiber assembly, stability, and morphology. Here, we show that rational mutations to our original peptide designs lead to structures with a remarkable level of order on the nanoscale that mimics certain natural fibrous assemblies. In the engineered system, the peptides assemble into two-stranded α-helical coiled-coil rods, which pack in axial register in a 3D hexagonal lattice of size 1.824 nm, and with a periodicity of 4.2 nm along the fiber axis. This model is supported by both electron microscopy and x-ray diffraction. Specifically, the fibers display surface striations separated by nanoscale distances that precisely match the 4.2-nm length expected for peptides configured as α-helices as designed. These patterns extend unbroken across the widths (&gt;=50 nm) and lengths (&gt;10 μm) of the fibers. Furthermore, the spacing of the striations can be altered predictably by changing the length of the peptides. These features reflect a high level of internal order within the fibers introduced by the peptide-design process. To our knowledge, this exceptional order, and its persistence along and across the fibers, is unique in a biomimetic system. This work represents a step toward rational bottom-up assembly of nanostructured fibrous biomaterials for potential applications in synthetic biology and nanobiotechnology.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0700801104</identifier><identifier>PMID: 17567757</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biochemistry ; Biocompatible Materials - chemical synthesis ; Biological Sciences ; Biomimetic Materials - chemical synthesis ; Biophysics ; Design ; Design engineering ; Diffraction patterns ; Modeling ; Mutation ; Nanostructures ; Nanotechnology ; Peptides ; Peptides - chemistry ; Protein Conformation ; Protein Engineering - methods ; Proteins ; Proteins - chemical synthesis ; Simulations ; Water ; Wave diffraction ; Waxes ; X ray diffraction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (26), p.10853-10858</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 26, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-68a49a5f8b12024fadce64628159490b412e8ad29c13b9ac076f50a37d7b05003</citedby><cites>FETCH-LOGICAL-c554t-68a49a5f8b12024fadce64628159490b412e8ad29c13b9ac076f50a37d7b05003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/26.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25436028$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25436028$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17567757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Papapostolou, David</creatorcontrib><creatorcontrib>Smith, Andrew M</creatorcontrib><creatorcontrib>Atkins, Edward D.T</creatorcontrib><creatorcontrib>Oliver, Seb J</creatorcontrib><creatorcontrib>Ryadnov, Maxim G</creatorcontrib><creatorcontrib>Serpell, Louise C</creatorcontrib><creatorcontrib>Woolfson, Derek N</creatorcontrib><title>Engineering nanoscale order into a designed protein fiber</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We have established a designed system comprising two peptides that coassemble to form long, thickened protein fibers in water. This system can be rationally engineered to alter fiber assembly, stability, and morphology. Here, we show that rational mutations to our original peptide designs lead to structures with a remarkable level of order on the nanoscale that mimics certain natural fibrous assemblies. In the engineered system, the peptides assemble into two-stranded α-helical coiled-coil rods, which pack in axial register in a 3D hexagonal lattice of size 1.824 nm, and with a periodicity of 4.2 nm along the fiber axis. This model is supported by both electron microscopy and x-ray diffraction. Specifically, the fibers display surface striations separated by nanoscale distances that precisely match the 4.2-nm length expected for peptides configured as α-helices as designed. These patterns extend unbroken across the widths (&gt;=50 nm) and lengths (&gt;10 μm) of the fibers. Furthermore, the spacing of the striations can be altered predictably by changing the length of the peptides. These features reflect a high level of internal order within the fibers introduced by the peptide-design process. To our knowledge, this exceptional order, and its persistence along and across the fibers, is unique in a biomimetic system. This work represents a step toward rational bottom-up assembly of nanostructured fibrous biomaterials for potential applications in synthetic biology and nanobiotechnology.</description><subject>Biochemistry</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biological Sciences</subject><subject>Biomimetic Materials - chemical synthesis</subject><subject>Biophysics</subject><subject>Design</subject><subject>Design engineering</subject><subject>Diffraction patterns</subject><subject>Modeling</subject><subject>Mutation</subject><subject>Nanostructures</subject><subject>Nanotechnology</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Protein Conformation</subject><subject>Protein Engineering - methods</subject><subject>Proteins</subject><subject>Proteins - chemical synthesis</subject><subject>Simulations</subject><subject>Water</subject><subject>Wave diffraction</subject><subject>Waxes</subject><subject>X ray diffraction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAUxC0EokvhzAmIOCBxSPue488LEqrKh1SJA_RsOYkTvMrai51U8N_jaFdd4MLpHeY3ozcaQp4jXCDI5nIfbL4ACaAAEdgDskHQWAum4SHZAFBZK0bZGXmS8xYANFfwmJyh5EJKLjdEX4fRB-eSD2MVbIi5s5OrYupdqnyYY2Wr3mU_BtdX-xRn50M1-Nalp-TRYKfsnh3vObn9cP3t6lN98-Xj56v3N3XHOZtroSzTlg-qRQqUDbbvnGCCKuS6fNkypE7ZnuoOm1bbDqQYONhG9rIFDtCck3eH3P3S7lxxhznZyeyT39n0y0Trzd9K8N_NGO8MKo3I14A3x4AUfywuz2bnc-emyQYXl2xQC00powV8_Q-4jUsKpZyhgA2iUE2BLg9Ql2LOyQ33nyCYdROzbmJOmxTHyz8LnPjjCAV4ewRW5ymOGSrKUbwxwzJNs_s5F7b6D1uQFwdkm-eY7hnKWSOAqqK_OuiDjcaOyWdz-3UtCCCVoKXkb8WQskI</recordid><startdate>20070626</startdate><enddate>20070626</enddate><creator>Papapostolou, David</creator><creator>Smith, Andrew M</creator><creator>Atkins, Edward D.T</creator><creator>Oliver, Seb J</creator><creator>Ryadnov, Maxim G</creator><creator>Serpell, Louise C</creator><creator>Woolfson, Derek N</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20070626</creationdate><title>Engineering nanoscale order into a designed protein fiber</title><author>Papapostolou, David ; Smith, Andrew M ; Atkins, Edward D.T ; Oliver, Seb J ; Ryadnov, Maxim G ; Serpell, Louise C ; Woolfson, Derek N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-68a49a5f8b12024fadce64628159490b412e8ad29c13b9ac076f50a37d7b05003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biochemistry</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biological Sciences</topic><topic>Biomimetic Materials - chemical synthesis</topic><topic>Biophysics</topic><topic>Design</topic><topic>Design engineering</topic><topic>Diffraction patterns</topic><topic>Modeling</topic><topic>Mutation</topic><topic>Nanostructures</topic><topic>Nanotechnology</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Protein Conformation</topic><topic>Protein Engineering - methods</topic><topic>Proteins</topic><topic>Proteins - chemical synthesis</topic><topic>Simulations</topic><topic>Water</topic><topic>Wave diffraction</topic><topic>Waxes</topic><topic>X ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papapostolou, David</creatorcontrib><creatorcontrib>Smith, Andrew M</creatorcontrib><creatorcontrib>Atkins, Edward D.T</creatorcontrib><creatorcontrib>Oliver, Seb J</creatorcontrib><creatorcontrib>Ryadnov, Maxim G</creatorcontrib><creatorcontrib>Serpell, Louise C</creatorcontrib><creatorcontrib>Woolfson, Derek N</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papapostolou, David</au><au>Smith, Andrew M</au><au>Atkins, Edward D.T</au><au>Oliver, Seb J</au><au>Ryadnov, Maxim G</au><au>Serpell, Louise C</au><au>Woolfson, Derek N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering nanoscale order into a designed protein fiber</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-06-26</date><risdate>2007</risdate><volume>104</volume><issue>26</issue><spage>10853</spage><epage>10858</epage><pages>10853-10858</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We have established a designed system comprising two peptides that coassemble to form long, thickened protein fibers in water. This system can be rationally engineered to alter fiber assembly, stability, and morphology. Here, we show that rational mutations to our original peptide designs lead to structures with a remarkable level of order on the nanoscale that mimics certain natural fibrous assemblies. In the engineered system, the peptides assemble into two-stranded α-helical coiled-coil rods, which pack in axial register in a 3D hexagonal lattice of size 1.824 nm, and with a periodicity of 4.2 nm along the fiber axis. This model is supported by both electron microscopy and x-ray diffraction. Specifically, the fibers display surface striations separated by nanoscale distances that precisely match the 4.2-nm length expected for peptides configured as α-helices as designed. These patterns extend unbroken across the widths (&gt;=50 nm) and lengths (&gt;10 μm) of the fibers. Furthermore, the spacing of the striations can be altered predictably by changing the length of the peptides. These features reflect a high level of internal order within the fibers introduced by the peptide-design process. To our knowledge, this exceptional order, and its persistence along and across the fibers, is unique in a biomimetic system. This work represents a step toward rational bottom-up assembly of nanostructured fibrous biomaterials for potential applications in synthetic biology and nanobiotechnology.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17567757</pmid><doi>10.1073/pnas.0700801104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (26), p.10853-10858
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_0700801104
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biochemistry
Biocompatible Materials - chemical synthesis
Biological Sciences
Biomimetic Materials - chemical synthesis
Biophysics
Design
Design engineering
Diffraction patterns
Modeling
Mutation
Nanostructures
Nanotechnology
Peptides
Peptides - chemistry
Protein Conformation
Protein Engineering - methods
Proteins
Proteins - chemical synthesis
Simulations
Water
Wave diffraction
Waxes
X ray diffraction
title Engineering nanoscale order into a designed protein fiber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20nanoscale%20order%20into%20a%20designed%20protein%20fiber&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Papapostolou,%20David&rft.date=2007-06-26&rft.volume=104&rft.issue=26&rft.spage=10853&rft.epage=10858&rft.pages=10853-10858&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0700801104&rft_dat=%3Cjstor_cross%3E25436028%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201311683&rft_id=info:pmid/17567757&rft_jstor_id=25436028&rfr_iscdi=true