Hyperpolarized Water as an Authentic Magnetic Resonance Imaging Contrast Agent
Pure water in a highly ¹H spin-polarized state is proposed as a contrast-agent-free contrast agent to visualize its macroscopic evolution in aqueous media by MRI. Remotely enhanced liquids for image contrast (RELIC) utilizes a ¹H signal of water that is enhanced outside the sample in continuous-flow...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-02, Vol.104 (6), p.1754-1759 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1759 |
---|---|
container_issue | 6 |
container_start_page | 1754 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | McCarney, Evan R. Armstrong, Brandon D. Lingwood, Mark D. Han, Songi |
description | Pure water in a highly ¹H spin-polarized state is proposed as a contrast-agent-free contrast agent to visualize its macroscopic evolution in aqueous media by MRI. Remotely enhanced liquids for image contrast (RELIC) utilizes a ¹H signal of water that is enhanced outside the sample in continuous-flow mode and immediately delivered to the sample to obtain maximum contrast between entering and bulk fluids. Hyperpolarization suggests an ideal contrast mechanism to highlight the ubiquitous and specific function of water in physiology, biology, and materials because the physiological, chemical, and macroscopic function of water is not altered by the degree of magnetization. We present an approach that is capable of instantaneously enhancing the ¹H MRI signal by up to 2 orders of magnitude through the Overhauser effect under ambient conditions at 0.35 tesla by using highly spin-polarized unpaired electrons that are covalently immobilized onto a porous, water-saturated gel matrix. The continuous polarization of radical-free flowing water allowed us to distinctively visualize vortices in model reactors and dispersion patterns through porous media. A ¹H signal enhancement of water by a factor of -10 and -100 provides for an observation time of >4 and 7 s, respectively, upon its injection into fluids with a T₁ relaxation time of >1.5 s. The implications for chemical engineering or biomedical applications of using hyperpolarized solvents or physiological fluids to visualize mass transport and perfusion with high and authentic MRI contrast originating from water itself, and not from foreign contrast agents, are immediate. |
doi_str_mv | 10.1073/pnas.0610540104 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0610540104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25426368</jstor_id><sourcerecordid>25426368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-cca67d3190c0dcd11c5471cd290b6d87d69b6c7c3814f83abec3e7e7fbcba35a3</originalsourceid><addsrcrecordid>eNpt0cFq3DAQBmBRWpJNmnNPLaaH9ORkZMmSdSksS9oE0hZKQ45ClmXHi1dyJbkkefrI7JJNS08S6JsfzQxC7zCcYeDkfLQqnAHDUFLAQF-hBQaBc0YFvEYLgILnFS3oIToKYQ0AoqzgAB1iXjBaYFig75cPo_GjG5TvH02T3apofKZCpmy2nOKdsbHX2TfVWTNffprgrLLaZFcb1fW2y1bORq9CzJZdsm_Rm1YNwZzszmN08-Xi1-oyv_7x9Wq1vM51yXDMtVaMNwQL0NDoBmNdUo51UwioWVPxhomaaa5JhWlbEVUbTQw3vK11rUipyDH6vM0dp3pjGm3mTwxy9P1G-QfpVC__frH9nezcH4m5oKn3FHC6C_Du92RClJs-aDMMyho3BckqIdK4RIIf_4FrN3mbmpMFYEIKJlhC51ukvQvBm_b5JxjkvCg5L0ruF5UqPrxsYO93m0ng0w7Mlfs4KllCJZXtNAzR3McXUf-XCbzfgnWIzj-LokyTIKwiT4P8saU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201332696</pqid></control><display><type>article</type><title>Hyperpolarized Water as an Authentic Magnetic Resonance Imaging Contrast Agent</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>McCarney, Evan R. ; Armstrong, Brandon D. ; Lingwood, Mark D. ; Han, Songi</creator><creatorcontrib>McCarney, Evan R. ; Armstrong, Brandon D. ; Lingwood, Mark D. ; Han, Songi</creatorcontrib><description>Pure water in a highly ¹H spin-polarized state is proposed as a contrast-agent-free contrast agent to visualize its macroscopic evolution in aqueous media by MRI. Remotely enhanced liquids for image contrast (RELIC) utilizes a ¹H signal of water that is enhanced outside the sample in continuous-flow mode and immediately delivered to the sample to obtain maximum contrast between entering and bulk fluids. Hyperpolarization suggests an ideal contrast mechanism to highlight the ubiquitous and specific function of water in physiology, biology, and materials because the physiological, chemical, and macroscopic function of water is not altered by the degree of magnetization. We present an approach that is capable of instantaneously enhancing the ¹H MRI signal by up to 2 orders of magnitude through the Overhauser effect under ambient conditions at 0.35 tesla by using highly spin-polarized unpaired electrons that are covalently immobilized onto a porous, water-saturated gel matrix. The continuous polarization of radical-free flowing water allowed us to distinctively visualize vortices in model reactors and dispersion patterns through porous media. A ¹H signal enhancement of water by a factor of -10 and -100 provides for an observation time of >4 and 7 s, respectively, upon its injection into fluids with a T₁ relaxation time of >1.5 s. The implications for chemical engineering or biomedical applications of using hyperpolarized solvents or physiological fluids to visualize mass transport and perfusion with high and authentic MRI contrast originating from water itself, and not from foreign contrast agents, are immediate.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0610540104</identifier><identifier>PMID: 17264210</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biochemistry ; Capillaries ; Contrast Media ; Electrons ; Flow velocity ; Free radicals ; Image contrast ; Imaging ; Magnetic fields ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; Microwaves ; NMR ; Nuclear magnetic resonance ; Physical Sciences ; Protons ; Water</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-02, Vol.104 (6), p.1754-1759</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 6, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-cca67d3190c0dcd11c5471cd290b6d87d69b6c7c3814f83abec3e7e7fbcba35a3</citedby><cites>FETCH-LOGICAL-c561t-cca67d3190c0dcd11c5471cd290b6d87d69b6c7c3814f83abec3e7e7fbcba35a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25426368$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25426368$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17264210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCarney, Evan R.</creatorcontrib><creatorcontrib>Armstrong, Brandon D.</creatorcontrib><creatorcontrib>Lingwood, Mark D.</creatorcontrib><creatorcontrib>Han, Songi</creatorcontrib><title>Hyperpolarized Water as an Authentic Magnetic Resonance Imaging Contrast Agent</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Pure water in a highly ¹H spin-polarized state is proposed as a contrast-agent-free contrast agent to visualize its macroscopic evolution in aqueous media by MRI. Remotely enhanced liquids for image contrast (RELIC) utilizes a ¹H signal of water that is enhanced outside the sample in continuous-flow mode and immediately delivered to the sample to obtain maximum contrast between entering and bulk fluids. Hyperpolarization suggests an ideal contrast mechanism to highlight the ubiquitous and specific function of water in physiology, biology, and materials because the physiological, chemical, and macroscopic function of water is not altered by the degree of magnetization. We present an approach that is capable of instantaneously enhancing the ¹H MRI signal by up to 2 orders of magnitude through the Overhauser effect under ambient conditions at 0.35 tesla by using highly spin-polarized unpaired electrons that are covalently immobilized onto a porous, water-saturated gel matrix. The continuous polarization of radical-free flowing water allowed us to distinctively visualize vortices in model reactors and dispersion patterns through porous media. A ¹H signal enhancement of water by a factor of -10 and -100 provides for an observation time of >4 and 7 s, respectively, upon its injection into fluids with a T₁ relaxation time of >1.5 s. The implications for chemical engineering or biomedical applications of using hyperpolarized solvents or physiological fluids to visualize mass transport and perfusion with high and authentic MRI contrast originating from water itself, and not from foreign contrast agents, are immediate.</description><subject>Biochemistry</subject><subject>Capillaries</subject><subject>Contrast Media</subject><subject>Electrons</subject><subject>Flow velocity</subject><subject>Free radicals</subject><subject>Image contrast</subject><subject>Imaging</subject><subject>Magnetic fields</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Microwaves</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physical Sciences</subject><subject>Protons</subject><subject>Water</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0cFq3DAQBmBRWpJNmnNPLaaH9ORkZMmSdSksS9oE0hZKQ45ClmXHi1dyJbkkefrI7JJNS08S6JsfzQxC7zCcYeDkfLQqnAHDUFLAQF-hBQaBc0YFvEYLgILnFS3oIToKYQ0AoqzgAB1iXjBaYFig75cPo_GjG5TvH02T3apofKZCpmy2nOKdsbHX2TfVWTNffprgrLLaZFcb1fW2y1bORq9CzJZdsm_Rm1YNwZzszmN08-Xi1-oyv_7x9Wq1vM51yXDMtVaMNwQL0NDoBmNdUo51UwioWVPxhomaaa5JhWlbEVUbTQw3vK11rUipyDH6vM0dp3pjGm3mTwxy9P1G-QfpVC__frH9nezcH4m5oKn3FHC6C_Du92RClJs-aDMMyho3BckqIdK4RIIf_4FrN3mbmpMFYEIKJlhC51ukvQvBm_b5JxjkvCg5L0ruF5UqPrxsYO93m0ng0w7Mlfs4KllCJZXtNAzR3McXUf-XCbzfgnWIzj-LokyTIKwiT4P8saU</recordid><startdate>20070206</startdate><enddate>20070206</enddate><creator>McCarney, Evan R.</creator><creator>Armstrong, Brandon D.</creator><creator>Lingwood, Mark D.</creator><creator>Han, Songi</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070206</creationdate><title>Hyperpolarized Water as an Authentic Magnetic Resonance Imaging Contrast Agent</title><author>McCarney, Evan R. ; Armstrong, Brandon D. ; Lingwood, Mark D. ; Han, Songi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-cca67d3190c0dcd11c5471cd290b6d87d69b6c7c3814f83abec3e7e7fbcba35a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biochemistry</topic><topic>Capillaries</topic><topic>Contrast Media</topic><topic>Electrons</topic><topic>Flow velocity</topic><topic>Free radicals</topic><topic>Image contrast</topic><topic>Imaging</topic><topic>Magnetic fields</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Microwaves</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physical Sciences</topic><topic>Protons</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCarney, Evan R.</creatorcontrib><creatorcontrib>Armstrong, Brandon D.</creatorcontrib><creatorcontrib>Lingwood, Mark D.</creatorcontrib><creatorcontrib>Han, Songi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCarney, Evan R.</au><au>Armstrong, Brandon D.</au><au>Lingwood, Mark D.</au><au>Han, Songi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperpolarized Water as an Authentic Magnetic Resonance Imaging Contrast Agent</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-02-06</date><risdate>2007</risdate><volume>104</volume><issue>6</issue><spage>1754</spage><epage>1759</epage><pages>1754-1759</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Pure water in a highly ¹H spin-polarized state is proposed as a contrast-agent-free contrast agent to visualize its macroscopic evolution in aqueous media by MRI. Remotely enhanced liquids for image contrast (RELIC) utilizes a ¹H signal of water that is enhanced outside the sample in continuous-flow mode and immediately delivered to the sample to obtain maximum contrast between entering and bulk fluids. Hyperpolarization suggests an ideal contrast mechanism to highlight the ubiquitous and specific function of water in physiology, biology, and materials because the physiological, chemical, and macroscopic function of water is not altered by the degree of magnetization. We present an approach that is capable of instantaneously enhancing the ¹H MRI signal by up to 2 orders of magnitude through the Overhauser effect under ambient conditions at 0.35 tesla by using highly spin-polarized unpaired electrons that are covalently immobilized onto a porous, water-saturated gel matrix. The continuous polarization of radical-free flowing water allowed us to distinctively visualize vortices in model reactors and dispersion patterns through porous media. A ¹H signal enhancement of water by a factor of -10 and -100 provides for an observation time of >4 and 7 s, respectively, upon its injection into fluids with a T₁ relaxation time of >1.5 s. The implications for chemical engineering or biomedical applications of using hyperpolarized solvents or physiological fluids to visualize mass transport and perfusion with high and authentic MRI contrast originating from water itself, and not from foreign contrast agents, are immediate.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17264210</pmid><doi>10.1073/pnas.0610540104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-02, Vol.104 (6), p.1754-1759 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_0610540104 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biochemistry Capillaries Contrast Media Electrons Flow velocity Free radicals Image contrast Imaging Magnetic fields Magnetic Resonance Imaging - instrumentation Magnetic Resonance Imaging - methods Microwaves NMR Nuclear magnetic resonance Physical Sciences Protons Water |
title | Hyperpolarized Water as an Authentic Magnetic Resonance Imaging Contrast Agent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperpolarized%20Water%20as%20an%20Authentic%20Magnetic%20Resonance%20Imaging%20Contrast%20Agent&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=McCarney,%20Evan%20R.&rft.date=2007-02-06&rft.volume=104&rft.issue=6&rft.spage=1754&rft.epage=1759&rft.pages=1754-1759&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0610540104&rft_dat=%3Cjstor_cross%3E25426368%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201332696&rft_id=info:pmid/17264210&rft_jstor_id=25426368&rfr_iscdi=true |