Hyperpolarized Water as an Authentic Magnetic Resonance Imaging Contrast Agent

Pure water in a highly ¹H spin-polarized state is proposed as a contrast-agent-free contrast agent to visualize its macroscopic evolution in aqueous media by MRI. Remotely enhanced liquids for image contrast (RELIC) utilizes a ¹H signal of water that is enhanced outside the sample in continuous-flow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-02, Vol.104 (6), p.1754-1759
Hauptverfasser: McCarney, Evan R., Armstrong, Brandon D., Lingwood, Mark D., Han, Songi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1759
container_issue 6
container_start_page 1754
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator McCarney, Evan R.
Armstrong, Brandon D.
Lingwood, Mark D.
Han, Songi
description Pure water in a highly ¹H spin-polarized state is proposed as a contrast-agent-free contrast agent to visualize its macroscopic evolution in aqueous media by MRI. Remotely enhanced liquids for image contrast (RELIC) utilizes a ¹H signal of water that is enhanced outside the sample in continuous-flow mode and immediately delivered to the sample to obtain maximum contrast between entering and bulk fluids. Hyperpolarization suggests an ideal contrast mechanism to highlight the ubiquitous and specific function of water in physiology, biology, and materials because the physiological, chemical, and macroscopic function of water is not altered by the degree of magnetization. We present an approach that is capable of instantaneously enhancing the ¹H MRI signal by up to 2 orders of magnitude through the Overhauser effect under ambient conditions at 0.35 tesla by using highly spin-polarized unpaired electrons that are covalently immobilized onto a porous, water-saturated gel matrix. The continuous polarization of radical-free flowing water allowed us to distinctively visualize vortices in model reactors and dispersion patterns through porous media. A ¹H signal enhancement of water by a factor of -10 and -100 provides for an observation time of >4 and 7 s, respectively, upon its injection into fluids with a T₁ relaxation time of >1.5 s. The implications for chemical engineering or biomedical applications of using hyperpolarized solvents or physiological fluids to visualize mass transport and perfusion with high and authentic MRI contrast originating from water itself, and not from foreign contrast agents, are immediate.
doi_str_mv 10.1073/pnas.0610540104
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0610540104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25426368</jstor_id><sourcerecordid>25426368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-cca67d3190c0dcd11c5471cd290b6d87d69b6c7c3814f83abec3e7e7fbcba35a3</originalsourceid><addsrcrecordid>eNpt0cFq3DAQBmBRWpJNmnNPLaaH9ORkZMmSdSksS9oE0hZKQ45ClmXHi1dyJbkkefrI7JJNS08S6JsfzQxC7zCcYeDkfLQqnAHDUFLAQF-hBQaBc0YFvEYLgILnFS3oIToKYQ0AoqzgAB1iXjBaYFig75cPo_GjG5TvH02T3apofKZCpmy2nOKdsbHX2TfVWTNffprgrLLaZFcb1fW2y1bORq9CzJZdsm_Rm1YNwZzszmN08-Xi1-oyv_7x9Wq1vM51yXDMtVaMNwQL0NDoBmNdUo51UwioWVPxhomaaa5JhWlbEVUbTQw3vK11rUipyDH6vM0dp3pjGm3mTwxy9P1G-QfpVC__frH9nezcH4m5oKn3FHC6C_Du92RClJs-aDMMyho3BckqIdK4RIIf_4FrN3mbmpMFYEIKJlhC51ukvQvBm_b5JxjkvCg5L0ruF5UqPrxsYO93m0ng0w7Mlfs4KllCJZXtNAzR3McXUf-XCbzfgnWIzj-LokyTIKwiT4P8saU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201332696</pqid></control><display><type>article</type><title>Hyperpolarized Water as an Authentic Magnetic Resonance Imaging Contrast Agent</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>McCarney, Evan R. ; Armstrong, Brandon D. ; Lingwood, Mark D. ; Han, Songi</creator><creatorcontrib>McCarney, Evan R. ; Armstrong, Brandon D. ; Lingwood, Mark D. ; Han, Songi</creatorcontrib><description>Pure water in a highly ¹H spin-polarized state is proposed as a contrast-agent-free contrast agent to visualize its macroscopic evolution in aqueous media by MRI. Remotely enhanced liquids for image contrast (RELIC) utilizes a ¹H signal of water that is enhanced outside the sample in continuous-flow mode and immediately delivered to the sample to obtain maximum contrast between entering and bulk fluids. Hyperpolarization suggests an ideal contrast mechanism to highlight the ubiquitous and specific function of water in physiology, biology, and materials because the physiological, chemical, and macroscopic function of water is not altered by the degree of magnetization. We present an approach that is capable of instantaneously enhancing the ¹H MRI signal by up to 2 orders of magnitude through the Overhauser effect under ambient conditions at 0.35 tesla by using highly spin-polarized unpaired electrons that are covalently immobilized onto a porous, water-saturated gel matrix. The continuous polarization of radical-free flowing water allowed us to distinctively visualize vortices in model reactors and dispersion patterns through porous media. A ¹H signal enhancement of water by a factor of -10 and -100 provides for an observation time of &gt;4 and 7 s, respectively, upon its injection into fluids with a T₁ relaxation time of &gt;1.5 s. The implications for chemical engineering or biomedical applications of using hyperpolarized solvents or physiological fluids to visualize mass transport and perfusion with high and authentic MRI contrast originating from water itself, and not from foreign contrast agents, are immediate.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0610540104</identifier><identifier>PMID: 17264210</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biochemistry ; Capillaries ; Contrast Media ; Electrons ; Flow velocity ; Free radicals ; Image contrast ; Imaging ; Magnetic fields ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; Microwaves ; NMR ; Nuclear magnetic resonance ; Physical Sciences ; Protons ; Water</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-02, Vol.104 (6), p.1754-1759</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 6, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-cca67d3190c0dcd11c5471cd290b6d87d69b6c7c3814f83abec3e7e7fbcba35a3</citedby><cites>FETCH-LOGICAL-c561t-cca67d3190c0dcd11c5471cd290b6d87d69b6c7c3814f83abec3e7e7fbcba35a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25426368$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25426368$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17264210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCarney, Evan R.</creatorcontrib><creatorcontrib>Armstrong, Brandon D.</creatorcontrib><creatorcontrib>Lingwood, Mark D.</creatorcontrib><creatorcontrib>Han, Songi</creatorcontrib><title>Hyperpolarized Water as an Authentic Magnetic Resonance Imaging Contrast Agent</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Pure water in a highly ¹H spin-polarized state is proposed as a contrast-agent-free contrast agent to visualize its macroscopic evolution in aqueous media by MRI. Remotely enhanced liquids for image contrast (RELIC) utilizes a ¹H signal of water that is enhanced outside the sample in continuous-flow mode and immediately delivered to the sample to obtain maximum contrast between entering and bulk fluids. Hyperpolarization suggests an ideal contrast mechanism to highlight the ubiquitous and specific function of water in physiology, biology, and materials because the physiological, chemical, and macroscopic function of water is not altered by the degree of magnetization. We present an approach that is capable of instantaneously enhancing the ¹H MRI signal by up to 2 orders of magnitude through the Overhauser effect under ambient conditions at 0.35 tesla by using highly spin-polarized unpaired electrons that are covalently immobilized onto a porous, water-saturated gel matrix. The continuous polarization of radical-free flowing water allowed us to distinctively visualize vortices in model reactors and dispersion patterns through porous media. A ¹H signal enhancement of water by a factor of -10 and -100 provides for an observation time of &gt;4 and 7 s, respectively, upon its injection into fluids with a T₁ relaxation time of &gt;1.5 s. The implications for chemical engineering or biomedical applications of using hyperpolarized solvents or physiological fluids to visualize mass transport and perfusion with high and authentic MRI contrast originating from water itself, and not from foreign contrast agents, are immediate.</description><subject>Biochemistry</subject><subject>Capillaries</subject><subject>Contrast Media</subject><subject>Electrons</subject><subject>Flow velocity</subject><subject>Free radicals</subject><subject>Image contrast</subject><subject>Imaging</subject><subject>Magnetic fields</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Microwaves</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physical Sciences</subject><subject>Protons</subject><subject>Water</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0cFq3DAQBmBRWpJNmnNPLaaH9ORkZMmSdSksS9oE0hZKQ45ClmXHi1dyJbkkefrI7JJNS08S6JsfzQxC7zCcYeDkfLQqnAHDUFLAQF-hBQaBc0YFvEYLgILnFS3oIToKYQ0AoqzgAB1iXjBaYFig75cPo_GjG5TvH02T3apofKZCpmy2nOKdsbHX2TfVWTNffprgrLLaZFcb1fW2y1bORq9CzJZdsm_Rm1YNwZzszmN08-Xi1-oyv_7x9Wq1vM51yXDMtVaMNwQL0NDoBmNdUo51UwioWVPxhomaaa5JhWlbEVUbTQw3vK11rUipyDH6vM0dp3pjGm3mTwxy9P1G-QfpVC__frH9nezcH4m5oKn3FHC6C_Du92RClJs-aDMMyho3BckqIdK4RIIf_4FrN3mbmpMFYEIKJlhC51ukvQvBm_b5JxjkvCg5L0ruF5UqPrxsYO93m0ng0w7Mlfs4KllCJZXtNAzR3McXUf-XCbzfgnWIzj-LokyTIKwiT4P8saU</recordid><startdate>20070206</startdate><enddate>20070206</enddate><creator>McCarney, Evan R.</creator><creator>Armstrong, Brandon D.</creator><creator>Lingwood, Mark D.</creator><creator>Han, Songi</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070206</creationdate><title>Hyperpolarized Water as an Authentic Magnetic Resonance Imaging Contrast Agent</title><author>McCarney, Evan R. ; Armstrong, Brandon D. ; Lingwood, Mark D. ; Han, Songi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-cca67d3190c0dcd11c5471cd290b6d87d69b6c7c3814f83abec3e7e7fbcba35a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biochemistry</topic><topic>Capillaries</topic><topic>Contrast Media</topic><topic>Electrons</topic><topic>Flow velocity</topic><topic>Free radicals</topic><topic>Image contrast</topic><topic>Imaging</topic><topic>Magnetic fields</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Microwaves</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physical Sciences</topic><topic>Protons</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCarney, Evan R.</creatorcontrib><creatorcontrib>Armstrong, Brandon D.</creatorcontrib><creatorcontrib>Lingwood, Mark D.</creatorcontrib><creatorcontrib>Han, Songi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCarney, Evan R.</au><au>Armstrong, Brandon D.</au><au>Lingwood, Mark D.</au><au>Han, Songi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperpolarized Water as an Authentic Magnetic Resonance Imaging Contrast Agent</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-02-06</date><risdate>2007</risdate><volume>104</volume><issue>6</issue><spage>1754</spage><epage>1759</epage><pages>1754-1759</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Pure water in a highly ¹H spin-polarized state is proposed as a contrast-agent-free contrast agent to visualize its macroscopic evolution in aqueous media by MRI. Remotely enhanced liquids for image contrast (RELIC) utilizes a ¹H signal of water that is enhanced outside the sample in continuous-flow mode and immediately delivered to the sample to obtain maximum contrast between entering and bulk fluids. Hyperpolarization suggests an ideal contrast mechanism to highlight the ubiquitous and specific function of water in physiology, biology, and materials because the physiological, chemical, and macroscopic function of water is not altered by the degree of magnetization. We present an approach that is capable of instantaneously enhancing the ¹H MRI signal by up to 2 orders of magnitude through the Overhauser effect under ambient conditions at 0.35 tesla by using highly spin-polarized unpaired electrons that are covalently immobilized onto a porous, water-saturated gel matrix. The continuous polarization of radical-free flowing water allowed us to distinctively visualize vortices in model reactors and dispersion patterns through porous media. A ¹H signal enhancement of water by a factor of -10 and -100 provides for an observation time of &gt;4 and 7 s, respectively, upon its injection into fluids with a T₁ relaxation time of &gt;1.5 s. The implications for chemical engineering or biomedical applications of using hyperpolarized solvents or physiological fluids to visualize mass transport and perfusion with high and authentic MRI contrast originating from water itself, and not from foreign contrast agents, are immediate.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17264210</pmid><doi>10.1073/pnas.0610540104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-02, Vol.104 (6), p.1754-1759
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_0610540104
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biochemistry
Capillaries
Contrast Media
Electrons
Flow velocity
Free radicals
Image contrast
Imaging
Magnetic fields
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
Microwaves
NMR
Nuclear magnetic resonance
Physical Sciences
Protons
Water
title Hyperpolarized Water as an Authentic Magnetic Resonance Imaging Contrast Agent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperpolarized%20Water%20as%20an%20Authentic%20Magnetic%20Resonance%20Imaging%20Contrast%20Agent&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=McCarney,%20Evan%20R.&rft.date=2007-02-06&rft.volume=104&rft.issue=6&rft.spage=1754&rft.epage=1759&rft.pages=1754-1759&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0610540104&rft_dat=%3Cjstor_cross%3E25426368%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201332696&rft_id=info:pmid/17264210&rft_jstor_id=25426368&rfr_iscdi=true