Functional Similarities between Phage λ Orf and Escherichia coli RecFOR in Initiation of Genetic Exchange

Genetic recombination in bacteriophage λ relies on DNA end processing by Exo to expose 3′-tailed strands for annealing and exchange by β protein. Phage λ encodes an additional recombinase, Orf, which participates in the early stages of recombination by supplying a function equivalent to the Escheric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-08, Vol.102 (32), p.11260-11265
Hauptverfasser: Maxwell, Karen L., Reed, Patricia, Zhang, Rong-guang, Beasley, Steven, Walmsley, Adrian R., Curtis, Fiona A., Joachimiak, Andrej, Edwards, Aled M., Sharples, Gary J., Radding, Charles M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11265
container_issue 32
container_start_page 11260
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Maxwell, Karen L.
Reed, Patricia
Zhang, Rong-guang
Beasley, Steven
Walmsley, Adrian R.
Curtis, Fiona A.
Joachimiak, Andrej
Edwards, Aled M.
Sharples, Gary J.
Radding, Charles M.
description Genetic recombination in bacteriophage λ relies on DNA end processing by Exo to expose 3′-tailed strands for annealing and exchange by β protein. Phage λ encodes an additional recombinase, Orf, which participates in the early stages of recombination by supplying a function equivalent to the Escherichia coli RecFOR complex. These host enzymes assist loading of the RecA strand exchange protein onto ssDNA coated with ssDNA-binding protein. In this study, we purified the Orf protein, analyzed its biochemical properties, and determined its crystal structure at 2.5 Å. The homodimeric Orf protein is arranged as a toroid with a shallow U-shaped cleft, lined with basic residues, running perpendicular to the central cavity. Orf binds DNA, favoring single-stranded over duplex and with no obvious preference for gapped, 3′-tailed, or 5′-tailed substrates. An interaction between Orf and ssDNA-binding protein was indicated by far Western analysis. The functional similarities between Orf and RecFOR are discussed in relation to the early steps of recombinational exchange and the interplay between phage and bacterial recombinases.
doi_str_mv 10.1073/pnas.0503399102
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0503399102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3376255</jstor_id><sourcerecordid>3376255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-3bb91d3c104d753baa869344a558fc86ec31a4afe16df3f293db788749e616553</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_Agit1Wz15EgoeCh2nzeyYXQcpuLRRWqp5DJvNmJ8tsZk1mtP5t_g_-TWbZpateekogn_cl7z2EXlFyQUnJL7fBpgsiCedaU8KeoBklmhZKaPIUzQhhZVEJJk7QaUprQoiWFXmOTqgipcr3GVovpuBGPwTb489-43sb_egh4RrGHwABf-rsCvDvX3gZW2xDg-fJdRC967zFbug9vgO3WN5hH_BNyLV2l4aHFl9DgNE7PL93nQ0reIGetbZP8PJwnqGvi_mXq4_F7fL65urDbeEk02PB61rThjtKRFNKXltbKc2FsFJWrasUOE6tsC1Q1bS8ZZo3dVlVpdCgqJKSn6H3-9ztVG-gcRDGaHuzjX5j408zWG_-fQm-M6vhu6G04lKJHHB-CIjDtwnSaDY-Oeh7G2CYklGVUBXj8lFIdamEpCrDt__B9TDFPPNkGKFMa6JoRpd75OKQUoT24cuUmN22zW7b5rjtXPHm706P_rDeDN4dwK7yGMcMZ7ldpohpp74f4X7MFj9iM3m9J-s0DvHBcF4qlgf_B_MNyKo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201299061</pqid></control><display><type>article</type><title>Functional Similarities between Phage λ Orf and Escherichia coli RecFOR in Initiation of Genetic Exchange</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Maxwell, Karen L. ; Reed, Patricia ; Zhang, Rong-guang ; Beasley, Steven ; Walmsley, Adrian R. ; Curtis, Fiona A. ; Joachimiak, Andrej ; Edwards, Aled M. ; Sharples, Gary J. ; Radding, Charles M.</creator><creatorcontrib>Maxwell, Karen L. ; Reed, Patricia ; Zhang, Rong-guang ; Beasley, Steven ; Walmsley, Adrian R. ; Curtis, Fiona A. ; Joachimiak, Andrej ; Edwards, Aled M. ; Sharples, Gary J. ; Radding, Charles M.</creatorcontrib><description>Genetic recombination in bacteriophage λ relies on DNA end processing by Exo to expose 3′-tailed strands for annealing and exchange by β protein. Phage λ encodes an additional recombinase, Orf, which participates in the early stages of recombination by supplying a function equivalent to the Escherichia coli RecFOR complex. These host enzymes assist loading of the RecA strand exchange protein onto ssDNA coated with ssDNA-binding protein. In this study, we purified the Orf protein, analyzed its biochemical properties, and determined its crystal structure at 2.5 Å. The homodimeric Orf protein is arranged as a toroid with a shallow U-shaped cleft, lined with basic residues, running perpendicular to the central cavity. Orf binds DNA, favoring single-stranded over duplex and with no obvious preference for gapped, 3′-tailed, or 5′-tailed substrates. An interaction between Orf and ssDNA-binding protein was indicated by far Western analysis. The functional similarities between Orf and RecFOR are discussed in relation to the early steps of recombinational exchange and the interplay between phage and bacterial recombinases.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0503399102</identifier><identifier>PMID: 16076958</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Annealing ; Bacterial proteins ; Bacteriophage lambda - genetics ; Bacteriophages ; Biological Sciences ; Blotting, Western ; Cloning, Molecular ; Crystal structure ; Crystallography ; Dimers ; DNA ; DNA repair ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Drug interactions ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fluorescence ; Gels ; Genetic recombination ; Models, Molecular ; Molecular Sequence Data ; Monomers ; Open reading frames ; Phage l ; Phage lambda ; Proteins ; Recombination, Genetic - genetics ; Sequence Analysis, DNA ; Viral Proteins - genetics ; Viral Proteins - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-08, Vol.102 (32), p.11260-11265</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 9, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-3bb91d3c104d753baa869344a558fc86ec31a4afe16df3f293db788749e616553</citedby><cites>FETCH-LOGICAL-c529t-3bb91d3c104d753baa869344a558fc86ec31a4afe16df3f293db788749e616553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/32.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3376255$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3376255$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27911,27912,53778,53780,58004,58237</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16076958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maxwell, Karen L.</creatorcontrib><creatorcontrib>Reed, Patricia</creatorcontrib><creatorcontrib>Zhang, Rong-guang</creatorcontrib><creatorcontrib>Beasley, Steven</creatorcontrib><creatorcontrib>Walmsley, Adrian R.</creatorcontrib><creatorcontrib>Curtis, Fiona A.</creatorcontrib><creatorcontrib>Joachimiak, Andrej</creatorcontrib><creatorcontrib>Edwards, Aled M.</creatorcontrib><creatorcontrib>Sharples, Gary J.</creatorcontrib><creatorcontrib>Radding, Charles M.</creatorcontrib><title>Functional Similarities between Phage λ Orf and Escherichia coli RecFOR in Initiation of Genetic Exchange</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Genetic recombination in bacteriophage λ relies on DNA end processing by Exo to expose 3′-tailed strands for annealing and exchange by β protein. Phage λ encodes an additional recombinase, Orf, which participates in the early stages of recombination by supplying a function equivalent to the Escherichia coli RecFOR complex. These host enzymes assist loading of the RecA strand exchange protein onto ssDNA coated with ssDNA-binding protein. In this study, we purified the Orf protein, analyzed its biochemical properties, and determined its crystal structure at 2.5 Å. The homodimeric Orf protein is arranged as a toroid with a shallow U-shaped cleft, lined with basic residues, running perpendicular to the central cavity. Orf binds DNA, favoring single-stranded over duplex and with no obvious preference for gapped, 3′-tailed, or 5′-tailed substrates. An interaction between Orf and ssDNA-binding protein was indicated by far Western analysis. The functional similarities between Orf and RecFOR are discussed in relation to the early steps of recombinational exchange and the interplay between phage and bacterial recombinases.</description><subject>Amino Acid Sequence</subject><subject>Annealing</subject><subject>Bacterial proteins</subject><subject>Bacteriophage lambda - genetics</subject><subject>Bacteriophages</subject><subject>Biological Sciences</subject><subject>Blotting, Western</subject><subject>Cloning, Molecular</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Dimers</subject><subject>DNA</subject><subject>DNA repair</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drug interactions</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fluorescence</subject><subject>Gels</subject><subject>Genetic recombination</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Monomers</subject><subject>Open reading frames</subject><subject>Phage l</subject><subject>Phage lambda</subject><subject>Proteins</subject><subject>Recombination, Genetic - genetics</subject><subject>Sequence Analysis, DNA</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9rFDEUB_Agit1Wz15EgoeCh2nzeyYXQcpuLRRWqp5DJvNmJ8tsZk1mtP5t_g_-TWbZpateekogn_cl7z2EXlFyQUnJL7fBpgsiCedaU8KeoBklmhZKaPIUzQhhZVEJJk7QaUprQoiWFXmOTqgipcr3GVovpuBGPwTb489-43sb_egh4RrGHwABf-rsCvDvX3gZW2xDg-fJdRC967zFbug9vgO3WN5hH_BNyLV2l4aHFl9DgNE7PL93nQ0reIGetbZP8PJwnqGvi_mXq4_F7fL65urDbeEk02PB61rThjtKRFNKXltbKc2FsFJWrasUOE6tsC1Q1bS8ZZo3dVlVpdCgqJKSn6H3-9ztVG-gcRDGaHuzjX5j408zWG_-fQm-M6vhu6G04lKJHHB-CIjDtwnSaDY-Oeh7G2CYklGVUBXj8lFIdamEpCrDt__B9TDFPPNkGKFMa6JoRpd75OKQUoT24cuUmN22zW7b5rjtXPHm706P_rDeDN4dwK7yGMcMZ7ldpohpp74f4X7MFj9iM3m9J-s0DvHBcF4qlgf_B_MNyKo</recordid><startdate>20050809</startdate><enddate>20050809</enddate><creator>Maxwell, Karen L.</creator><creator>Reed, Patricia</creator><creator>Zhang, Rong-guang</creator><creator>Beasley, Steven</creator><creator>Walmsley, Adrian R.</creator><creator>Curtis, Fiona A.</creator><creator>Joachimiak, Andrej</creator><creator>Edwards, Aled M.</creator><creator>Sharples, Gary J.</creator><creator>Radding, Charles M.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050809</creationdate><title>Functional Similarities between Phage λ Orf and Escherichia coli RecFOR in Initiation of Genetic Exchange</title><author>Maxwell, Karen L. ; Reed, Patricia ; Zhang, Rong-guang ; Beasley, Steven ; Walmsley, Adrian R. ; Curtis, Fiona A. ; Joachimiak, Andrej ; Edwards, Aled M. ; Sharples, Gary J. ; Radding, Charles M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-3bb91d3c104d753baa869344a558fc86ec31a4afe16df3f293db788749e616553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Annealing</topic><topic>Bacterial proteins</topic><topic>Bacteriophage lambda - genetics</topic><topic>Bacteriophages</topic><topic>Biological Sciences</topic><topic>Blotting, Western</topic><topic>Cloning, Molecular</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Dimers</topic><topic>DNA</topic><topic>DNA repair</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drug interactions</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fluorescence</topic><topic>Gels</topic><topic>Genetic recombination</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Monomers</topic><topic>Open reading frames</topic><topic>Phage l</topic><topic>Phage lambda</topic><topic>Proteins</topic><topic>Recombination, Genetic - genetics</topic><topic>Sequence Analysis, DNA</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maxwell, Karen L.</creatorcontrib><creatorcontrib>Reed, Patricia</creatorcontrib><creatorcontrib>Zhang, Rong-guang</creatorcontrib><creatorcontrib>Beasley, Steven</creatorcontrib><creatorcontrib>Walmsley, Adrian R.</creatorcontrib><creatorcontrib>Curtis, Fiona A.</creatorcontrib><creatorcontrib>Joachimiak, Andrej</creatorcontrib><creatorcontrib>Edwards, Aled M.</creatorcontrib><creatorcontrib>Sharples, Gary J.</creatorcontrib><creatorcontrib>Radding, Charles M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maxwell, Karen L.</au><au>Reed, Patricia</au><au>Zhang, Rong-guang</au><au>Beasley, Steven</au><au>Walmsley, Adrian R.</au><au>Curtis, Fiona A.</au><au>Joachimiak, Andrej</au><au>Edwards, Aled M.</au><au>Sharples, Gary J.</au><au>Radding, Charles M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Similarities between Phage λ Orf and Escherichia coli RecFOR in Initiation of Genetic Exchange</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-08-09</date><risdate>2005</risdate><volume>102</volume><issue>32</issue><spage>11260</spage><epage>11265</epage><pages>11260-11265</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Genetic recombination in bacteriophage λ relies on DNA end processing by Exo to expose 3′-tailed strands for annealing and exchange by β protein. Phage λ encodes an additional recombinase, Orf, which participates in the early stages of recombination by supplying a function equivalent to the Escherichia coli RecFOR complex. These host enzymes assist loading of the RecA strand exchange protein onto ssDNA coated with ssDNA-binding protein. In this study, we purified the Orf protein, analyzed its biochemical properties, and determined its crystal structure at 2.5 Å. The homodimeric Orf protein is arranged as a toroid with a shallow U-shaped cleft, lined with basic residues, running perpendicular to the central cavity. Orf binds DNA, favoring single-stranded over duplex and with no obvious preference for gapped, 3′-tailed, or 5′-tailed substrates. An interaction between Orf and ssDNA-binding protein was indicated by far Western analysis. The functional similarities between Orf and RecFOR are discussed in relation to the early steps of recombinational exchange and the interplay between phage and bacterial recombinases.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16076958</pmid><doi>10.1073/pnas.0503399102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-08, Vol.102 (32), p.11260-11265
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_0503399102
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Annealing
Bacterial proteins
Bacteriophage lambda - genetics
Bacteriophages
Biological Sciences
Blotting, Western
Cloning, Molecular
Crystal structure
Crystallography
Dimers
DNA
DNA repair
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Drug interactions
Enzymes
Escherichia coli
Escherichia coli - genetics
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Fluorescence
Gels
Genetic recombination
Models, Molecular
Molecular Sequence Data
Monomers
Open reading frames
Phage l
Phage lambda
Proteins
Recombination, Genetic - genetics
Sequence Analysis, DNA
Viral Proteins - genetics
Viral Proteins - metabolism
title Functional Similarities between Phage λ Orf and Escherichia coli RecFOR in Initiation of Genetic Exchange
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Similarities%20between%20Phage%20%CE%BB%20Orf%20and%20Escherichia%20coli%20RecFOR%20in%20Initiation%20of%20Genetic%20Exchange&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Maxwell,%20Karen%20L.&rft.date=2005-08-09&rft.volume=102&rft.issue=32&rft.spage=11260&rft.epage=11265&rft.pages=11260-11265&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0503399102&rft_dat=%3Cjstor_cross%3E3376255%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201299061&rft_id=info:pmid/16076958&rft_jstor_id=3376255&rfr_iscdi=true