Functional Similarities between Phage λ Orf and Escherichia coli RecFOR in Initiation of Genetic Exchange
Genetic recombination in bacteriophage λ relies on DNA end processing by Exo to expose 3′-tailed strands for annealing and exchange by β protein. Phage λ encodes an additional recombinase, Orf, which participates in the early stages of recombination by supplying a function equivalent to the Escheric...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2005-08, Vol.102 (32), p.11260-11265 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11265 |
---|---|
container_issue | 32 |
container_start_page | 11260 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 102 |
creator | Maxwell, Karen L. Reed, Patricia Zhang, Rong-guang Beasley, Steven Walmsley, Adrian R. Curtis, Fiona A. Joachimiak, Andrej Edwards, Aled M. Sharples, Gary J. Radding, Charles M. |
description | Genetic recombination in bacteriophage λ relies on DNA end processing by Exo to expose 3′-tailed strands for annealing and exchange by β protein. Phage λ encodes an additional recombinase, Orf, which participates in the early stages of recombination by supplying a function equivalent to the Escherichia coli RecFOR complex. These host enzymes assist loading of the RecA strand exchange protein onto ssDNA coated with ssDNA-binding protein. In this study, we purified the Orf protein, analyzed its biochemical properties, and determined its crystal structure at 2.5 Å. The homodimeric Orf protein is arranged as a toroid with a shallow U-shaped cleft, lined with basic residues, running perpendicular to the central cavity. Orf binds DNA, favoring single-stranded over duplex and with no obvious preference for gapped, 3′-tailed, or 5′-tailed substrates. An interaction between Orf and ssDNA-binding protein was indicated by far Western analysis. The functional similarities between Orf and RecFOR are discussed in relation to the early steps of recombinational exchange and the interplay between phage and bacterial recombinases. |
doi_str_mv | 10.1073/pnas.0503399102 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0503399102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3376255</jstor_id><sourcerecordid>3376255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-3bb91d3c104d753baa869344a558fc86ec31a4afe16df3f293db788749e616553</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_Agit1Wz15EgoeCh2nzeyYXQcpuLRRWqp5DJvNmJ8tsZk1mtP5t_g_-TWbZpateekogn_cl7z2EXlFyQUnJL7fBpgsiCedaU8KeoBklmhZKaPIUzQhhZVEJJk7QaUprQoiWFXmOTqgipcr3GVovpuBGPwTb489-43sb_egh4RrGHwABf-rsCvDvX3gZW2xDg-fJdRC967zFbug9vgO3WN5hH_BNyLV2l4aHFl9DgNE7PL93nQ0reIGetbZP8PJwnqGvi_mXq4_F7fL65urDbeEk02PB61rThjtKRFNKXltbKc2FsFJWrasUOE6tsC1Q1bS8ZZo3dVlVpdCgqJKSn6H3-9ztVG-gcRDGaHuzjX5j408zWG_-fQm-M6vhu6G04lKJHHB-CIjDtwnSaDY-Oeh7G2CYklGVUBXj8lFIdamEpCrDt__B9TDFPPNkGKFMa6JoRpd75OKQUoT24cuUmN22zW7b5rjtXPHm706P_rDeDN4dwK7yGMcMZ7ldpohpp74f4X7MFj9iM3m9J-s0DvHBcF4qlgf_B_MNyKo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201299061</pqid></control><display><type>article</type><title>Functional Similarities between Phage λ Orf and Escherichia coli RecFOR in Initiation of Genetic Exchange</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Maxwell, Karen L. ; Reed, Patricia ; Zhang, Rong-guang ; Beasley, Steven ; Walmsley, Adrian R. ; Curtis, Fiona A. ; Joachimiak, Andrej ; Edwards, Aled M. ; Sharples, Gary J. ; Radding, Charles M.</creator><creatorcontrib>Maxwell, Karen L. ; Reed, Patricia ; Zhang, Rong-guang ; Beasley, Steven ; Walmsley, Adrian R. ; Curtis, Fiona A. ; Joachimiak, Andrej ; Edwards, Aled M. ; Sharples, Gary J. ; Radding, Charles M.</creatorcontrib><description>Genetic recombination in bacteriophage λ relies on DNA end processing by Exo to expose 3′-tailed strands for annealing and exchange by β protein. Phage λ encodes an additional recombinase, Orf, which participates in the early stages of recombination by supplying a function equivalent to the Escherichia coli RecFOR complex. These host enzymes assist loading of the RecA strand exchange protein onto ssDNA coated with ssDNA-binding protein. In this study, we purified the Orf protein, analyzed its biochemical properties, and determined its crystal structure at 2.5 Å. The homodimeric Orf protein is arranged as a toroid with a shallow U-shaped cleft, lined with basic residues, running perpendicular to the central cavity. Orf binds DNA, favoring single-stranded over duplex and with no obvious preference for gapped, 3′-tailed, or 5′-tailed substrates. An interaction between Orf and ssDNA-binding protein was indicated by far Western analysis. The functional similarities between Orf and RecFOR are discussed in relation to the early steps of recombinational exchange and the interplay between phage and bacterial recombinases.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0503399102</identifier><identifier>PMID: 16076958</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Annealing ; Bacterial proteins ; Bacteriophage lambda - genetics ; Bacteriophages ; Biological Sciences ; Blotting, Western ; Cloning, Molecular ; Crystal structure ; Crystallography ; Dimers ; DNA ; DNA repair ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Drug interactions ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fluorescence ; Gels ; Genetic recombination ; Models, Molecular ; Molecular Sequence Data ; Monomers ; Open reading frames ; Phage l ; Phage lambda ; Proteins ; Recombination, Genetic - genetics ; Sequence Analysis, DNA ; Viral Proteins - genetics ; Viral Proteins - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-08, Vol.102 (32), p.11260-11265</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 9, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-3bb91d3c104d753baa869344a558fc86ec31a4afe16df3f293db788749e616553</citedby><cites>FETCH-LOGICAL-c529t-3bb91d3c104d753baa869344a558fc86ec31a4afe16df3f293db788749e616553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/32.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3376255$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3376255$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27911,27912,53778,53780,58004,58237</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16076958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maxwell, Karen L.</creatorcontrib><creatorcontrib>Reed, Patricia</creatorcontrib><creatorcontrib>Zhang, Rong-guang</creatorcontrib><creatorcontrib>Beasley, Steven</creatorcontrib><creatorcontrib>Walmsley, Adrian R.</creatorcontrib><creatorcontrib>Curtis, Fiona A.</creatorcontrib><creatorcontrib>Joachimiak, Andrej</creatorcontrib><creatorcontrib>Edwards, Aled M.</creatorcontrib><creatorcontrib>Sharples, Gary J.</creatorcontrib><creatorcontrib>Radding, Charles M.</creatorcontrib><title>Functional Similarities between Phage λ Orf and Escherichia coli RecFOR in Initiation of Genetic Exchange</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Genetic recombination in bacteriophage λ relies on DNA end processing by Exo to expose 3′-tailed strands for annealing and exchange by β protein. Phage λ encodes an additional recombinase, Orf, which participates in the early stages of recombination by supplying a function equivalent to the Escherichia coli RecFOR complex. These host enzymes assist loading of the RecA strand exchange protein onto ssDNA coated with ssDNA-binding protein. In this study, we purified the Orf protein, analyzed its biochemical properties, and determined its crystal structure at 2.5 Å. The homodimeric Orf protein is arranged as a toroid with a shallow U-shaped cleft, lined with basic residues, running perpendicular to the central cavity. Orf binds DNA, favoring single-stranded over duplex and with no obvious preference for gapped, 3′-tailed, or 5′-tailed substrates. An interaction between Orf and ssDNA-binding protein was indicated by far Western analysis. The functional similarities between Orf and RecFOR are discussed in relation to the early steps of recombinational exchange and the interplay between phage and bacterial recombinases.</description><subject>Amino Acid Sequence</subject><subject>Annealing</subject><subject>Bacterial proteins</subject><subject>Bacteriophage lambda - genetics</subject><subject>Bacteriophages</subject><subject>Biological Sciences</subject><subject>Blotting, Western</subject><subject>Cloning, Molecular</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Dimers</subject><subject>DNA</subject><subject>DNA repair</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drug interactions</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fluorescence</subject><subject>Gels</subject><subject>Genetic recombination</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Monomers</subject><subject>Open reading frames</subject><subject>Phage l</subject><subject>Phage lambda</subject><subject>Proteins</subject><subject>Recombination, Genetic - genetics</subject><subject>Sequence Analysis, DNA</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9rFDEUB_Agit1Wz15EgoeCh2nzeyYXQcpuLRRWqp5DJvNmJ8tsZk1mtP5t_g_-TWbZpateekogn_cl7z2EXlFyQUnJL7fBpgsiCedaU8KeoBklmhZKaPIUzQhhZVEJJk7QaUprQoiWFXmOTqgipcr3GVovpuBGPwTb489-43sb_egh4RrGHwABf-rsCvDvX3gZW2xDg-fJdRC967zFbug9vgO3WN5hH_BNyLV2l4aHFl9DgNE7PL93nQ0reIGetbZP8PJwnqGvi_mXq4_F7fL65urDbeEk02PB61rThjtKRFNKXltbKc2FsFJWrasUOE6tsC1Q1bS8ZZo3dVlVpdCgqJKSn6H3-9ztVG-gcRDGaHuzjX5j408zWG_-fQm-M6vhu6G04lKJHHB-CIjDtwnSaDY-Oeh7G2CYklGVUBXj8lFIdamEpCrDt__B9TDFPPNkGKFMa6JoRpd75OKQUoT24cuUmN22zW7b5rjtXPHm706P_rDeDN4dwK7yGMcMZ7ldpohpp74f4X7MFj9iM3m9J-s0DvHBcF4qlgf_B_MNyKo</recordid><startdate>20050809</startdate><enddate>20050809</enddate><creator>Maxwell, Karen L.</creator><creator>Reed, Patricia</creator><creator>Zhang, Rong-guang</creator><creator>Beasley, Steven</creator><creator>Walmsley, Adrian R.</creator><creator>Curtis, Fiona A.</creator><creator>Joachimiak, Andrej</creator><creator>Edwards, Aled M.</creator><creator>Sharples, Gary J.</creator><creator>Radding, Charles M.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050809</creationdate><title>Functional Similarities between Phage λ Orf and Escherichia coli RecFOR in Initiation of Genetic Exchange</title><author>Maxwell, Karen L. ; Reed, Patricia ; Zhang, Rong-guang ; Beasley, Steven ; Walmsley, Adrian R. ; Curtis, Fiona A. ; Joachimiak, Andrej ; Edwards, Aled M. ; Sharples, Gary J. ; Radding, Charles M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-3bb91d3c104d753baa869344a558fc86ec31a4afe16df3f293db788749e616553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Annealing</topic><topic>Bacterial proteins</topic><topic>Bacteriophage lambda - genetics</topic><topic>Bacteriophages</topic><topic>Biological Sciences</topic><topic>Blotting, Western</topic><topic>Cloning, Molecular</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Dimers</topic><topic>DNA</topic><topic>DNA repair</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drug interactions</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fluorescence</topic><topic>Gels</topic><topic>Genetic recombination</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Monomers</topic><topic>Open reading frames</topic><topic>Phage l</topic><topic>Phage lambda</topic><topic>Proteins</topic><topic>Recombination, Genetic - genetics</topic><topic>Sequence Analysis, DNA</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maxwell, Karen L.</creatorcontrib><creatorcontrib>Reed, Patricia</creatorcontrib><creatorcontrib>Zhang, Rong-guang</creatorcontrib><creatorcontrib>Beasley, Steven</creatorcontrib><creatorcontrib>Walmsley, Adrian R.</creatorcontrib><creatorcontrib>Curtis, Fiona A.</creatorcontrib><creatorcontrib>Joachimiak, Andrej</creatorcontrib><creatorcontrib>Edwards, Aled M.</creatorcontrib><creatorcontrib>Sharples, Gary J.</creatorcontrib><creatorcontrib>Radding, Charles M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maxwell, Karen L.</au><au>Reed, Patricia</au><au>Zhang, Rong-guang</au><au>Beasley, Steven</au><au>Walmsley, Adrian R.</au><au>Curtis, Fiona A.</au><au>Joachimiak, Andrej</au><au>Edwards, Aled M.</au><au>Sharples, Gary J.</au><au>Radding, Charles M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Similarities between Phage λ Orf and Escherichia coli RecFOR in Initiation of Genetic Exchange</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-08-09</date><risdate>2005</risdate><volume>102</volume><issue>32</issue><spage>11260</spage><epage>11265</epage><pages>11260-11265</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Genetic recombination in bacteriophage λ relies on DNA end processing by Exo to expose 3′-tailed strands for annealing and exchange by β protein. Phage λ encodes an additional recombinase, Orf, which participates in the early stages of recombination by supplying a function equivalent to the Escherichia coli RecFOR complex. These host enzymes assist loading of the RecA strand exchange protein onto ssDNA coated with ssDNA-binding protein. In this study, we purified the Orf protein, analyzed its biochemical properties, and determined its crystal structure at 2.5 Å. The homodimeric Orf protein is arranged as a toroid with a shallow U-shaped cleft, lined with basic residues, running perpendicular to the central cavity. Orf binds DNA, favoring single-stranded over duplex and with no obvious preference for gapped, 3′-tailed, or 5′-tailed substrates. An interaction between Orf and ssDNA-binding protein was indicated by far Western analysis. The functional similarities between Orf and RecFOR are discussed in relation to the early steps of recombinational exchange and the interplay between phage and bacterial recombinases.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16076958</pmid><doi>10.1073/pnas.0503399102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2005-08, Vol.102 (32), p.11260-11265 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_0503399102 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Annealing Bacterial proteins Bacteriophage lambda - genetics Bacteriophages Biological Sciences Blotting, Western Cloning, Molecular Crystal structure Crystallography Dimers DNA DNA repair DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Drug interactions Enzymes Escherichia coli Escherichia coli - genetics Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Fluorescence Gels Genetic recombination Models, Molecular Molecular Sequence Data Monomers Open reading frames Phage l Phage lambda Proteins Recombination, Genetic - genetics Sequence Analysis, DNA Viral Proteins - genetics Viral Proteins - metabolism |
title | Functional Similarities between Phage λ Orf and Escherichia coli RecFOR in Initiation of Genetic Exchange |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Similarities%20between%20Phage%20%CE%BB%20Orf%20and%20Escherichia%20coli%20RecFOR%20in%20Initiation%20of%20Genetic%20Exchange&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Maxwell,%20Karen%20L.&rft.date=2005-08-09&rft.volume=102&rft.issue=32&rft.spage=11260&rft.epage=11265&rft.pages=11260-11265&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0503399102&rft_dat=%3Cjstor_cross%3E3376255%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201299061&rft_id=info:pmid/16076958&rft_jstor_id=3376255&rfr_iscdi=true |