Hg(II) Binding to a Weakly Associated Coiled Coil Nucleates an Encoded Metalloprotein Fold: A Kinetic Analysis

A detailed kinetic analysis of metal encapsulation by a de novo-designed protein is described. The kinetic mechanism of Hg(II) encapsulation in the three-stranded coiled coil formed by the peptide CH3CO-G LKALEEK CKALEEK LKALEEK G-NH2 (Baby L9C) is derived by global analysis. The mechanism involves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2003-04, Vol.100 (7), p.3760-3765
Hauptverfasser: Farrer, Brian T., Pecoraro, Vincent L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3765
container_issue 7
container_start_page 3760
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 100
creator Farrer, Brian T.
Pecoraro, Vincent L.
description A detailed kinetic analysis of metal encapsulation by a de novo-designed protein is described. The kinetic mechanism of Hg(II) encapsulation in the three-stranded coiled coil formed by the peptide CH3CO-G LKALEEK CKALEEK LKALEEK G-NH2 (Baby L9C) is derived by global analysis. The mechanism involves rapid initial collapse of two peptides by Hg(II) forming $Hg(Baby\>L9C_{-H})_2$ with a linear thiolato Hg(II) bound to the cysteine sulfur atoms. Here, Baby L9CH denotes Baby L9C with the cysteine thiol deprotonated. Addition of the third peptide, forming the three-stranded coiled coil, is the rate-determining step and results in an intermediate state involving two separate species. One of the species, termed the properly folded intermediate, undergoes rapid deprotonation of the third cysteine thiol, yielding the desired three-stranded coiled coil with an encapsulated trigonal thiolato Hg(II). The other species, termed the misfolded intermediate, rearranges in an experimentally distinguishable step to the properly folded intermediate. The order of the reaction involving the addition of the third peptide with respect to the concentration of Baby L9C indicates that addition of the third helix only occurs through reaction of $Hg(Baby\>L9C_{-H})_2$ and Baby L9C that is unassociated with a coiled coil. Temperature dependence of the reaction afforded activation parameters for both the addition of the third helix $(\Delta H^\ddagger = 20(2)\>kcal/mol;\>\Delta S^\ddagger = 40(5)\>cal/mol\>K)$ and the rearrangement of the misfolded intermediate steps $(\Delta H^\ddagger = 23(2)\>kcal/mol;\>\Delta S^\ddagger = 27(5)\>cal/mol\>K)$. The mechanism is discussed with regard to metalloprotein folding and metalloprotein design.
doi_str_mv 10.1073/pnas.0336055100
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0336055100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3148687</jstor_id><sourcerecordid>3148687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-1739d6d145330e051b604e60ad86aadfc4929b300ca755c43d0c5e02c2ff991d3</originalsourceid><addsrcrecordid>eNp9kc1vEzEQxS0EoqFw5oKQ1QMfh23H9tq7RuIQopZGFLiAOFqO7Q0Ojh3WXkT-ezZK1BQOnJ4083tPM3oIPSVwTqBhF5uo8zkwJoBzAnAPTQhIUolawn00AaBN1da0PkGPcl4BgOQtPEQnhHJOCW0nKF4vX83nr_E7H62PS1wS1vib0z_CFk9zTsbr4iyeJR8Ogj8NJrhxmrGO-DKaZMfNR1d0CGnTp-J8xFcp2Dd4ij_46Io3eBp12GafH6MHnQ7ZPTnoKfp6dflldl3dfH4_n01vKlNLUirSMGmFJTVnDBxwshBQOwHatkJr240UlQsGYHTDuamZBcMdUEO7Tkpi2Sl6u8_dDIu1s8bF0uugNr1f636rkvbq703039Uy_VKEUyn56H9x8Pfp5-ByUWufjQtBR5eGrBpGhBSyHcGzf8BVGvrx26woEEZlw-kIXewh06ece9fdHkJA7XpUux7VscfR8fzu_Uf-UNwdYOc8xoFqFGvELuHlfwHVDSEU97uM5LM9ucol9bcoI3Ur2ob9AV-iub0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201329752</pqid></control><display><type>article</type><title>Hg(II) Binding to a Weakly Associated Coiled Coil Nucleates an Encoded Metalloprotein Fold: A Kinetic Analysis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Farrer, Brian T. ; Pecoraro, Vincent L.</creator><creatorcontrib>Farrer, Brian T. ; Pecoraro, Vincent L.</creatorcontrib><description>A detailed kinetic analysis of metal encapsulation by a de novo-designed protein is described. The kinetic mechanism of Hg(II) encapsulation in the three-stranded coiled coil formed by the peptide CH3CO-G LKALEEK CKALEEK LKALEEK G-NH2 (Baby L9C) is derived by global analysis. The mechanism involves rapid initial collapse of two peptides by Hg(II) forming $Hg(Baby\&gt;L9C_{-H})_2$ with a linear thiolato Hg(II) bound to the cysteine sulfur atoms. Here, Baby L9CH denotes Baby L9C with the cysteine thiol deprotonated. Addition of the third peptide, forming the three-stranded coiled coil, is the rate-determining step and results in an intermediate state involving two separate species. One of the species, termed the properly folded intermediate, undergoes rapid deprotonation of the third cysteine thiol, yielding the desired three-stranded coiled coil with an encapsulated trigonal thiolato Hg(II). The other species, termed the misfolded intermediate, rearranges in an experimentally distinguishable step to the properly folded intermediate. The order of the reaction involving the addition of the third peptide with respect to the concentration of Baby L9C indicates that addition of the third helix only occurs through reaction of $Hg(Baby\&gt;L9C_{-H})_2$ and Baby L9C that is unassociated with a coiled coil. Temperature dependence of the reaction afforded activation parameters for both the addition of the third helix $(\Delta H^\ddagger = 20(2)\&gt;kcal/mol;\&gt;\Delta S^\ddagger = 40(5)\&gt;cal/mol\&gt;K)$ and the rearrangement of the misfolded intermediate steps $(\Delta H^\ddagger = 23(2)\&gt;kcal/mol;\&gt;\Delta S^\ddagger = 27(5)\&gt;cal/mol\&gt;K)$. The mechanism is discussed with regard to metalloprotein folding and metalloprotein design.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0336055100</identifier><identifier>PMID: 12552128</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Biochemistry ; Bioinorganic Chemistry Special Feature ; Biological Sciences ; Coordination polymers ; Cysteine - chemistry ; Encapsulation ; Kinetics ; Mercury - chemistry ; Mercury - metabolism ; Metalloproteins ; Metalloproteins - chemistry ; Metalloproteins - metabolism ; Models, Molecular ; Molecular Sequence Data ; Oligopeptides - chemistry ; Peptides - chemistry ; Phosphates ; Physical Sciences ; Protein Folding ; Protein Structure, Secondary ; Proteins ; Reaction mechanisms ; Spectrophotometry, Ultraviolet ; Sulfhydryl Compounds - chemistry ; Thermodynamics ; Thiols ; Titration</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-04, Vol.100 (7), p.3760-3765</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 1, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-1739d6d145330e051b604e60ad86aadfc4929b300ca755c43d0c5e02c2ff991d3</citedby><cites>FETCH-LOGICAL-c491t-1739d6d145330e051b604e60ad86aadfc4929b300ca755c43d0c5e02c2ff991d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3148687$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3148687$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12552128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farrer, Brian T.</creatorcontrib><creatorcontrib>Pecoraro, Vincent L.</creatorcontrib><title>Hg(II) Binding to a Weakly Associated Coiled Coil Nucleates an Encoded Metalloprotein Fold: A Kinetic Analysis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A detailed kinetic analysis of metal encapsulation by a de novo-designed protein is described. The kinetic mechanism of Hg(II) encapsulation in the three-stranded coiled coil formed by the peptide CH3CO-G LKALEEK CKALEEK LKALEEK G-NH2 (Baby L9C) is derived by global analysis. The mechanism involves rapid initial collapse of two peptides by Hg(II) forming $Hg(Baby\&gt;L9C_{-H})_2$ with a linear thiolato Hg(II) bound to the cysteine sulfur atoms. Here, Baby L9CH denotes Baby L9C with the cysteine thiol deprotonated. Addition of the third peptide, forming the three-stranded coiled coil, is the rate-determining step and results in an intermediate state involving two separate species. One of the species, termed the properly folded intermediate, undergoes rapid deprotonation of the third cysteine thiol, yielding the desired three-stranded coiled coil with an encapsulated trigonal thiolato Hg(II). The other species, termed the misfolded intermediate, rearranges in an experimentally distinguishable step to the properly folded intermediate. The order of the reaction involving the addition of the third peptide with respect to the concentration of Baby L9C indicates that addition of the third helix only occurs through reaction of $Hg(Baby\&gt;L9C_{-H})_2$ and Baby L9C that is unassociated with a coiled coil. Temperature dependence of the reaction afforded activation parameters for both the addition of the third helix $(\Delta H^\ddagger = 20(2)\&gt;kcal/mol;\&gt;\Delta S^\ddagger = 40(5)\&gt;cal/mol\&gt;K)$ and the rearrangement of the misfolded intermediate steps $(\Delta H^\ddagger = 23(2)\&gt;kcal/mol;\&gt;\Delta S^\ddagger = 27(5)\&gt;cal/mol\&gt;K)$. The mechanism is discussed with regard to metalloprotein folding and metalloprotein design.</description><subject>Amino Acid Sequence</subject><subject>Biochemistry</subject><subject>Bioinorganic Chemistry Special Feature</subject><subject>Biological Sciences</subject><subject>Coordination polymers</subject><subject>Cysteine - chemistry</subject><subject>Encapsulation</subject><subject>Kinetics</subject><subject>Mercury - chemistry</subject><subject>Mercury - metabolism</subject><subject>Metalloproteins</subject><subject>Metalloproteins - chemistry</subject><subject>Metalloproteins - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Oligopeptides - chemistry</subject><subject>Peptides - chemistry</subject><subject>Phosphates</subject><subject>Physical Sciences</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Reaction mechanisms</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Thermodynamics</subject><subject>Thiols</subject><subject>Titration</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1vEzEQxS0EoqFw5oKQ1QMfh23H9tq7RuIQopZGFLiAOFqO7Q0Ojh3WXkT-ezZK1BQOnJ4083tPM3oIPSVwTqBhF5uo8zkwJoBzAnAPTQhIUolawn00AaBN1da0PkGPcl4BgOQtPEQnhHJOCW0nKF4vX83nr_E7H62PS1wS1vib0z_CFk9zTsbr4iyeJR8Ogj8NJrhxmrGO-DKaZMfNR1d0CGnTp-J8xFcp2Dd4ij_46Io3eBp12GafH6MHnQ7ZPTnoKfp6dflldl3dfH4_n01vKlNLUirSMGmFJTVnDBxwshBQOwHatkJr240UlQsGYHTDuamZBcMdUEO7Tkpi2Sl6u8_dDIu1s8bF0uugNr1f636rkvbq703039Uy_VKEUyn56H9x8Pfp5-ByUWufjQtBR5eGrBpGhBSyHcGzf8BVGvrx26woEEZlw-kIXewh06ece9fdHkJA7XpUux7VscfR8fzu_Uf-UNwdYOc8xoFqFGvELuHlfwHVDSEU97uM5LM9ucol9bcoI3Ur2ob9AV-iub0</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Farrer, Brian T.</creator><creator>Pecoraro, Vincent L.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030401</creationdate><title>Hg(II) Binding to a Weakly Associated Coiled Coil Nucleates an Encoded Metalloprotein Fold: A Kinetic Analysis</title><author>Farrer, Brian T. ; Pecoraro, Vincent L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-1739d6d145330e051b604e60ad86aadfc4929b300ca755c43d0c5e02c2ff991d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Sequence</topic><topic>Biochemistry</topic><topic>Bioinorganic Chemistry Special Feature</topic><topic>Biological Sciences</topic><topic>Coordination polymers</topic><topic>Cysteine - chemistry</topic><topic>Encapsulation</topic><topic>Kinetics</topic><topic>Mercury - chemistry</topic><topic>Mercury - metabolism</topic><topic>Metalloproteins</topic><topic>Metalloproteins - chemistry</topic><topic>Metalloproteins - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Oligopeptides - chemistry</topic><topic>Peptides - chemistry</topic><topic>Phosphates</topic><topic>Physical Sciences</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Reaction mechanisms</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Thermodynamics</topic><topic>Thiols</topic><topic>Titration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farrer, Brian T.</creatorcontrib><creatorcontrib>Pecoraro, Vincent L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farrer, Brian T.</au><au>Pecoraro, Vincent L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hg(II) Binding to a Weakly Associated Coiled Coil Nucleates an Encoded Metalloprotein Fold: A Kinetic Analysis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-04-01</date><risdate>2003</risdate><volume>100</volume><issue>7</issue><spage>3760</spage><epage>3765</epage><pages>3760-3765</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A detailed kinetic analysis of metal encapsulation by a de novo-designed protein is described. The kinetic mechanism of Hg(II) encapsulation in the three-stranded coiled coil formed by the peptide CH3CO-G LKALEEK CKALEEK LKALEEK G-NH2 (Baby L9C) is derived by global analysis. The mechanism involves rapid initial collapse of two peptides by Hg(II) forming $Hg(Baby\&gt;L9C_{-H})_2$ with a linear thiolato Hg(II) bound to the cysteine sulfur atoms. Here, Baby L9CH denotes Baby L9C with the cysteine thiol deprotonated. Addition of the third peptide, forming the three-stranded coiled coil, is the rate-determining step and results in an intermediate state involving two separate species. One of the species, termed the properly folded intermediate, undergoes rapid deprotonation of the third cysteine thiol, yielding the desired three-stranded coiled coil with an encapsulated trigonal thiolato Hg(II). The other species, termed the misfolded intermediate, rearranges in an experimentally distinguishable step to the properly folded intermediate. The order of the reaction involving the addition of the third peptide with respect to the concentration of Baby L9C indicates that addition of the third helix only occurs through reaction of $Hg(Baby\&gt;L9C_{-H})_2$ and Baby L9C that is unassociated with a coiled coil. Temperature dependence of the reaction afforded activation parameters for both the addition of the third helix $(\Delta H^\ddagger = 20(2)\&gt;kcal/mol;\&gt;\Delta S^\ddagger = 40(5)\&gt;cal/mol\&gt;K)$ and the rearrangement of the misfolded intermediate steps $(\Delta H^\ddagger = 23(2)\&gt;kcal/mol;\&gt;\Delta S^\ddagger = 27(5)\&gt;cal/mol\&gt;K)$. The mechanism is discussed with regard to metalloprotein folding and metalloprotein design.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12552128</pmid><doi>10.1073/pnas.0336055100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2003-04, Vol.100 (7), p.3760-3765
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_0336055100
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Biochemistry
Bioinorganic Chemistry Special Feature
Biological Sciences
Coordination polymers
Cysteine - chemistry
Encapsulation
Kinetics
Mercury - chemistry
Mercury - metabolism
Metalloproteins
Metalloproteins - chemistry
Metalloproteins - metabolism
Models, Molecular
Molecular Sequence Data
Oligopeptides - chemistry
Peptides - chemistry
Phosphates
Physical Sciences
Protein Folding
Protein Structure, Secondary
Proteins
Reaction mechanisms
Spectrophotometry, Ultraviolet
Sulfhydryl Compounds - chemistry
Thermodynamics
Thiols
Titration
title Hg(II) Binding to a Weakly Associated Coiled Coil Nucleates an Encoded Metalloprotein Fold: A Kinetic Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hg(II)%20Binding%20to%20a%20Weakly%20Associated%20Coiled%20Coil%20Nucleates%20an%20Encoded%20Metalloprotein%20Fold:%20A%20Kinetic%20Analysis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Farrer,%20Brian%20T.&rft.date=2003-04-01&rft.volume=100&rft.issue=7&rft.spage=3760&rft.epage=3765&rft.pages=3760-3765&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0336055100&rft_dat=%3Cjstor_cross%3E3148687%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201329752&rft_id=info:pmid/12552128&rft_jstor_id=3148687&rfr_iscdi=true