Exceptional Conservation of Horse-Human Gene Order on X Chromosome Revealed by High-Resolution Radiation Hybrid Mapping
Development of a dense map of the horse genome is key to efforts aimed at identifying genes controlling health, reproduction, and performance. We herein report a high-resolution gene map of the horse (Equus caballus) X chromosome (ECAX) generated by developing and typing 116 gene-specific and 12 sho...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2004-02, Vol.101 (8), p.2386-2391 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2391 |
---|---|
container_issue | 8 |
container_start_page | 2386 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 101 |
creator | Raudsepp, Terje Lee, Eun-Joon Kata, Srinivas R. Brinkmeyer, Candice Mickelson, James R. Skow, Loren C. Womack, James E. Chowdhary, Bhanu P. |
description | Development of a dense map of the horse genome is key to efforts aimed at identifying genes controlling health, reproduction, and performance. We herein report a high-resolution gene map of the horse (Equus caballus) X chromosome (ECAX) generated by developing and typing 116 gene-specific and 12 short tandem repeat markers on the 5,000-rad horse × hamster whole-genome radiation hybrid panel and mapping 29 gene loci by fluorescence in situ hybridization. The human X chromosome sequence was used as a template to select genes at 1-Mb intervals to develop equine orthologs. Coupled with our previous data, the new map comprises a total of 175 markers (139 genes and 36 short tandem repeats, of which 53 are fluorescence in situ hybridization mapped) distributed on average at ≈880-kb intervals along the chromosome. This is the densest and most uniformly distributed chromosomal map presently available in any mammalian species other than humans and rodents. Comparison of the horse and human X chromosome maps shows remarkable conservation of gene order along the entire span of the chromosomes, including the location of the centromere. An overview of the status of the horse map in relation to mouse, livestock, and companion animal species is also provided. The map will be instrumental for analysis of X linked health and fertility traits in horses by facilitating identification of targeted chromosomal regions for isolation of polymorphic markers, building bacterial artificial chromosome contigs, or sequencing. |
doi_str_mv | 10.1073/pnas.0308513100 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0308513100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3371301</jstor_id><sourcerecordid>3371301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c617t-2093beb21bf3634dbd048c6811048fc2479295324bddf4ec063c84a63795906f3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EokvhzAUhiwOc0o5jx7EPPaBVaZCKKq1A4mY5yWQ3qyQOdrJ0_z0Ju-oWDnAajeZ7b-x5hLxmcMEg5Zd9Z8MFcFAJ4wzgCVkw0CySQsNTsgCI00iJWJyRFyFsAUAnCp6TMya04sD0gvy8vi-wH2rX2YYuXRfQ7-zcUlfRzPmAUTa2tqM32CG98yV6Og2_0-XGu9YF1yJd4Q5tgyXN9zSr15tohcE142-XlS3rg1-2z31d0i-27-tu_ZI8q2wT8NWxnpNvn66_LrPo9u7m8_LjbVRIlg5RDJrnmMcsr7jkosxLEKqQirGpVkUsUh3rhMciL8tKYAGSF0pYyVOdaJAVPydXB99-zFssC-wGbxvT-7q1fm-crc2fk67emLXbGZ5ILWHSvz_qvfsxYhhMW4cCm8Z26MZgUibTVKjkvyDTsZRaz47v_gK3bvTT-YOJgQnQmskJujxAhXcheKweXszAzMmbOXlzSn5SvH380RN_jPoRMCtPdswoE3M17_zwT8BUY9MMeD9M5JsDuQ2D8w8o5ymbVvFfO9rLog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201409916</pqid></control><display><type>article</type><title>Exceptional Conservation of Horse-Human Gene Order on X Chromosome Revealed by High-Resolution Radiation Hybrid Mapping</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Raudsepp, Terje ; Lee, Eun-Joon ; Kata, Srinivas R. ; Brinkmeyer, Candice ; Mickelson, James R. ; Skow, Loren C. ; Womack, James E. ; Chowdhary, Bhanu P.</creator><creatorcontrib>Raudsepp, Terje ; Lee, Eun-Joon ; Kata, Srinivas R. ; Brinkmeyer, Candice ; Mickelson, James R. ; Skow, Loren C. ; Womack, James E. ; Chowdhary, Bhanu P.</creatorcontrib><description>Development of a dense map of the horse genome is key to efforts aimed at identifying genes controlling health, reproduction, and performance. We herein report a high-resolution gene map of the horse (Equus caballus) X chromosome (ECAX) generated by developing and typing 116 gene-specific and 12 short tandem repeat markers on the 5,000-rad horse × hamster whole-genome radiation hybrid panel and mapping 29 gene loci by fluorescence in situ hybridization. The human X chromosome sequence was used as a template to select genes at 1-Mb intervals to develop equine orthologs. Coupled with our previous data, the new map comprises a total of 175 markers (139 genes and 36 short tandem repeats, of which 53 are fluorescence in situ hybridization mapped) distributed on average at ≈880-kb intervals along the chromosome. This is the densest and most uniformly distributed chromosomal map presently available in any mammalian species other than humans and rodents. Comparison of the horse and human X chromosome maps shows remarkable conservation of gene order along the entire span of the chromosomes, including the location of the centromere. An overview of the status of the horse map in relation to mouse, livestock, and companion animal species is also provided. The map will be instrumental for analysis of X linked health and fertility traits in horses by facilitating identification of targeted chromosomal regions for isolation of polymorphic markers, building bacterial artificial chromosome contigs, or sequencing.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0308513100</identifier><identifier>PMID: 14983019</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Chromosome Mapping ; Chromosomes ; Chromosomes, Artificial, Bacterial ; Equus ; Female ; Gene order ; Genes ; Genetic loci ; Genetic mapping ; Genetic Markers ; Genetics ; Genomes ; Horses ; Horses - genetics ; Human X chromosome ; Humans ; In Situ Hybridization, Fluorescence ; Male ; Radiation ; Rodents ; X Chromosome - genetics ; X Chromosome - radiation effects ; Y Chromosome - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-02, Vol.101 (8), p.2386-2391</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 24, 2004</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c617t-2093beb21bf3634dbd048c6811048fc2479295324bddf4ec063c84a63795906f3</citedby><cites>FETCH-LOGICAL-c617t-2093beb21bf3634dbd048c6811048fc2479295324bddf4ec063c84a63795906f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3371301$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3371301$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14983019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raudsepp, Terje</creatorcontrib><creatorcontrib>Lee, Eun-Joon</creatorcontrib><creatorcontrib>Kata, Srinivas R.</creatorcontrib><creatorcontrib>Brinkmeyer, Candice</creatorcontrib><creatorcontrib>Mickelson, James R.</creatorcontrib><creatorcontrib>Skow, Loren C.</creatorcontrib><creatorcontrib>Womack, James E.</creatorcontrib><creatorcontrib>Chowdhary, Bhanu P.</creatorcontrib><title>Exceptional Conservation of Horse-Human Gene Order on X Chromosome Revealed by High-Resolution Radiation Hybrid Mapping</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Development of a dense map of the horse genome is key to efforts aimed at identifying genes controlling health, reproduction, and performance. We herein report a high-resolution gene map of the horse (Equus caballus) X chromosome (ECAX) generated by developing and typing 116 gene-specific and 12 short tandem repeat markers on the 5,000-rad horse × hamster whole-genome radiation hybrid panel and mapping 29 gene loci by fluorescence in situ hybridization. The human X chromosome sequence was used as a template to select genes at 1-Mb intervals to develop equine orthologs. Coupled with our previous data, the new map comprises a total of 175 markers (139 genes and 36 short tandem repeats, of which 53 are fluorescence in situ hybridization mapped) distributed on average at ≈880-kb intervals along the chromosome. This is the densest and most uniformly distributed chromosomal map presently available in any mammalian species other than humans and rodents. Comparison of the horse and human X chromosome maps shows remarkable conservation of gene order along the entire span of the chromosomes, including the location of the centromere. An overview of the status of the horse map in relation to mouse, livestock, and companion animal species is also provided. The map will be instrumental for analysis of X linked health and fertility traits in horses by facilitating identification of targeted chromosomal regions for isolation of polymorphic markers, building bacterial artificial chromosome contigs, or sequencing.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Chromosomes, Artificial, Bacterial</subject><subject>Equus</subject><subject>Female</subject><subject>Gene order</subject><subject>Genes</subject><subject>Genetic loci</subject><subject>Genetic mapping</subject><subject>Genetic Markers</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Horses</subject><subject>Horses - genetics</subject><subject>Human X chromosome</subject><subject>Humans</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Male</subject><subject>Radiation</subject><subject>Rodents</subject><subject>X Chromosome - genetics</subject><subject>X Chromosome - radiation effects</subject><subject>Y Chromosome - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EokvhzAUhiwOc0o5jx7EPPaBVaZCKKq1A4mY5yWQ3qyQOdrJ0_z0Ju-oWDnAajeZ7b-x5hLxmcMEg5Zd9Z8MFcFAJ4wzgCVkw0CySQsNTsgCI00iJWJyRFyFsAUAnCp6TMya04sD0gvy8vi-wH2rX2YYuXRfQ7-zcUlfRzPmAUTa2tqM32CG98yV6Og2_0-XGu9YF1yJd4Q5tgyXN9zSr15tohcE142-XlS3rg1-2z31d0i-27-tu_ZI8q2wT8NWxnpNvn66_LrPo9u7m8_LjbVRIlg5RDJrnmMcsr7jkosxLEKqQirGpVkUsUh3rhMciL8tKYAGSF0pYyVOdaJAVPydXB99-zFssC-wGbxvT-7q1fm-crc2fk67emLXbGZ5ILWHSvz_qvfsxYhhMW4cCm8Z26MZgUibTVKjkvyDTsZRaz47v_gK3bvTT-YOJgQnQmskJujxAhXcheKweXszAzMmbOXlzSn5SvH380RN_jPoRMCtPdswoE3M17_zwT8BUY9MMeD9M5JsDuQ2D8w8o5ymbVvFfO9rLog</recordid><startdate>20040224</startdate><enddate>20040224</enddate><creator>Raudsepp, Terje</creator><creator>Lee, Eun-Joon</creator><creator>Kata, Srinivas R.</creator><creator>Brinkmeyer, Candice</creator><creator>Mickelson, James R.</creator><creator>Skow, Loren C.</creator><creator>Womack, James E.</creator><creator>Chowdhary, Bhanu P.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040224</creationdate><title>Exceptional Conservation of Horse-Human Gene Order on X Chromosome Revealed by High-Resolution Radiation Hybrid Mapping</title><author>Raudsepp, Terje ; Lee, Eun-Joon ; Kata, Srinivas R. ; Brinkmeyer, Candice ; Mickelson, James R. ; Skow, Loren C. ; Womack, James E. ; Chowdhary, Bhanu P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c617t-2093beb21bf3634dbd048c6811048fc2479295324bddf4ec063c84a63795906f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Chromosomes, Artificial, Bacterial</topic><topic>Equus</topic><topic>Female</topic><topic>Gene order</topic><topic>Genes</topic><topic>Genetic loci</topic><topic>Genetic mapping</topic><topic>Genetic Markers</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Horses</topic><topic>Horses - genetics</topic><topic>Human X chromosome</topic><topic>Humans</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Male</topic><topic>Radiation</topic><topic>Rodents</topic><topic>X Chromosome - genetics</topic><topic>X Chromosome - radiation effects</topic><topic>Y Chromosome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raudsepp, Terje</creatorcontrib><creatorcontrib>Lee, Eun-Joon</creatorcontrib><creatorcontrib>Kata, Srinivas R.</creatorcontrib><creatorcontrib>Brinkmeyer, Candice</creatorcontrib><creatorcontrib>Mickelson, James R.</creatorcontrib><creatorcontrib>Skow, Loren C.</creatorcontrib><creatorcontrib>Womack, James E.</creatorcontrib><creatorcontrib>Chowdhary, Bhanu P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raudsepp, Terje</au><au>Lee, Eun-Joon</au><au>Kata, Srinivas R.</au><au>Brinkmeyer, Candice</au><au>Mickelson, James R.</au><au>Skow, Loren C.</au><au>Womack, James E.</au><au>Chowdhary, Bhanu P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exceptional Conservation of Horse-Human Gene Order on X Chromosome Revealed by High-Resolution Radiation Hybrid Mapping</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-02-24</date><risdate>2004</risdate><volume>101</volume><issue>8</issue><spage>2386</spage><epage>2391</epage><pages>2386-2391</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Development of a dense map of the horse genome is key to efforts aimed at identifying genes controlling health, reproduction, and performance. We herein report a high-resolution gene map of the horse (Equus caballus) X chromosome (ECAX) generated by developing and typing 116 gene-specific and 12 short tandem repeat markers on the 5,000-rad horse × hamster whole-genome radiation hybrid panel and mapping 29 gene loci by fluorescence in situ hybridization. The human X chromosome sequence was used as a template to select genes at 1-Mb intervals to develop equine orthologs. Coupled with our previous data, the new map comprises a total of 175 markers (139 genes and 36 short tandem repeats, of which 53 are fluorescence in situ hybridization mapped) distributed on average at ≈880-kb intervals along the chromosome. This is the densest and most uniformly distributed chromosomal map presently available in any mammalian species other than humans and rodents. Comparison of the horse and human X chromosome maps shows remarkable conservation of gene order along the entire span of the chromosomes, including the location of the centromere. An overview of the status of the horse map in relation to mouse, livestock, and companion animal species is also provided. The map will be instrumental for analysis of X linked health and fertility traits in horses by facilitating identification of targeted chromosomal regions for isolation of polymorphic markers, building bacterial artificial chromosome contigs, or sequencing.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14983019</pmid><doi>10.1073/pnas.0308513100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2004-02, Vol.101 (8), p.2386-2391 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_0308513100 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Chromosome Mapping Chromosomes Chromosomes, Artificial, Bacterial Equus Female Gene order Genes Genetic loci Genetic mapping Genetic Markers Genetics Genomes Horses Horses - genetics Human X chromosome Humans In Situ Hybridization, Fluorescence Male Radiation Rodents X Chromosome - genetics X Chromosome - radiation effects Y Chromosome - genetics |
title | Exceptional Conservation of Horse-Human Gene Order on X Chromosome Revealed by High-Resolution Radiation Hybrid Mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A38%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exceptional%20Conservation%20of%20Horse-Human%20Gene%20Order%20on%20X%20Chromosome%20Revealed%20by%20High-Resolution%20Radiation%20Hybrid%20Mapping&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Raudsepp,%20Terje&rft.date=2004-02-24&rft.volume=101&rft.issue=8&rft.spage=2386&rft.epage=2391&rft.pages=2386-2391&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0308513100&rft_dat=%3Cjstor_cross%3E3371301%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201409916&rft_id=info:pmid/14983019&rft_jstor_id=3371301&rfr_iscdi=true |