Hacking nature: genetic tools for reprograming enzymes

Enzymes have many modern industrial applications, from biomass decomposition in the production of biofuels to highly stereospecific biotransformations in pharmaceutical manufacture. The capacity to find or engineer enzymes with activities pertinent to specific applications has been essential for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology Australia 2017-05, Vol.38 (2), p.73
Hauptverfasser: Hartley, Carol J, Wilding, Matthew, Scott, Colin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 73
container_title Microbiology Australia
container_volume 38
creator Hartley, Carol J
Wilding, Matthew
Scott, Colin
description Enzymes have many modern industrial applications, from biomass decomposition in the production of biofuels to highly stereospecific biotransformations in pharmaceutical manufacture. The capacity to find or engineer enzymes with activities pertinent to specific applications has been essential for the growth of a multibillion dollar enzyme industry. Over the course of the past 50–60 years our capacity to address this issue has become increasingly sophisticated, supported by innumerable advances, from early discoveries such as the co-linearity of DNA and protein sequence1 to modern computational technologies for enzyme design. The design of enzyme function is an exciting nexus of fundamental biochemical understanding and applied engineering. Herein, we will cover some of the methods used in discovery and design, including some ‘next generation’ tools.
doi_str_mv 10.1071/MA17032
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1071_MA17032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1071_MA17032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c150t-7f01750bf4bf391c810f078e18367724bb820654d2e21bfaada213bdb7ef9be73</originalsourceid><addsrcrecordid>eNpNj7FOwzAURS0EElWp-AVvTIH3bCcvYasqoEhFLO0c2c5zFGiSyg5D-Xqo6MBd7h2OrnSEuEW4RyB8eFsigVYXYoZamcwoUpf_9rVYpPQBv9EVGAMzUayt_-yGVg52-or8KFseeOq8nMZxn2QYo4x8iGMbbX_CePg-9pxuxFWw-8SLc8_F7vlpu1pnm_eX19Vyk3nMYcooAFIOLhgXdIW-RAhAJWOpCyJlnCsVFLlpFCt0wdrGKtSuccShckx6Lu7-fn0cU4oc6kPsehuPNUJ9Mq7PxvoHZhVHcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hacking nature: genetic tools for reprograming enzymes</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hartley, Carol J ; Wilding, Matthew ; Scott, Colin</creator><creatorcontrib>Hartley, Carol J ; Wilding, Matthew ; Scott, Colin</creatorcontrib><description>Enzymes have many modern industrial applications, from biomass decomposition in the production of biofuels to highly stereospecific biotransformations in pharmaceutical manufacture. The capacity to find or engineer enzymes with activities pertinent to specific applications has been essential for the growth of a multibillion dollar enzyme industry. Over the course of the past 50–60 years our capacity to address this issue has become increasingly sophisticated, supported by innumerable advances, from early discoveries such as the co-linearity of DNA and protein sequence1 to modern computational technologies for enzyme design. The design of enzyme function is an exciting nexus of fundamental biochemical understanding and applied engineering. Herein, we will cover some of the methods used in discovery and design, including some ‘next generation’ tools.</description><identifier>ISSN: 1324-4272</identifier><identifier>EISSN: 1324-4272</identifier><identifier>DOI: 10.1071/MA17032</identifier><language>eng</language><ispartof>Microbiology Australia, 2017-05, Vol.38 (2), p.73</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c150t-7f01750bf4bf391c810f078e18367724bb820654d2e21bfaada213bdb7ef9be73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hartley, Carol J</creatorcontrib><creatorcontrib>Wilding, Matthew</creatorcontrib><creatorcontrib>Scott, Colin</creatorcontrib><title>Hacking nature: genetic tools for reprograming enzymes</title><title>Microbiology Australia</title><description>Enzymes have many modern industrial applications, from biomass decomposition in the production of biofuels to highly stereospecific biotransformations in pharmaceutical manufacture. The capacity to find or engineer enzymes with activities pertinent to specific applications has been essential for the growth of a multibillion dollar enzyme industry. Over the course of the past 50–60 years our capacity to address this issue has become increasingly sophisticated, supported by innumerable advances, from early discoveries such as the co-linearity of DNA and protein sequence1 to modern computational technologies for enzyme design. The design of enzyme function is an exciting nexus of fundamental biochemical understanding and applied engineering. Herein, we will cover some of the methods used in discovery and design, including some ‘next generation’ tools.</description><issn>1324-4272</issn><issn>1324-4272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNj7FOwzAURS0EElWp-AVvTIH3bCcvYasqoEhFLO0c2c5zFGiSyg5D-Xqo6MBd7h2OrnSEuEW4RyB8eFsigVYXYoZamcwoUpf_9rVYpPQBv9EVGAMzUayt_-yGVg52-or8KFseeOq8nMZxn2QYo4x8iGMbbX_CePg-9pxuxFWw-8SLc8_F7vlpu1pnm_eX19Vyk3nMYcooAFIOLhgXdIW-RAhAJWOpCyJlnCsVFLlpFCt0wdrGKtSuccShckx6Lu7-fn0cU4oc6kPsehuPNUJ9Mq7PxvoHZhVHcA</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Hartley, Carol J</creator><creator>Wilding, Matthew</creator><creator>Scott, Colin</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170501</creationdate><title>Hacking nature: genetic tools for reprograming enzymes</title><author>Hartley, Carol J ; Wilding, Matthew ; Scott, Colin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c150t-7f01750bf4bf391c810f078e18367724bb820654d2e21bfaada213bdb7ef9be73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartley, Carol J</creatorcontrib><creatorcontrib>Wilding, Matthew</creatorcontrib><creatorcontrib>Scott, Colin</creatorcontrib><collection>CrossRef</collection><jtitle>Microbiology Australia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartley, Carol J</au><au>Wilding, Matthew</au><au>Scott, Colin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hacking nature: genetic tools for reprograming enzymes</atitle><jtitle>Microbiology Australia</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>38</volume><issue>2</issue><spage>73</spage><pages>73-</pages><issn>1324-4272</issn><eissn>1324-4272</eissn><abstract>Enzymes have many modern industrial applications, from biomass decomposition in the production of biofuels to highly stereospecific biotransformations in pharmaceutical manufacture. The capacity to find or engineer enzymes with activities pertinent to specific applications has been essential for the growth of a multibillion dollar enzyme industry. Over the course of the past 50–60 years our capacity to address this issue has become increasingly sophisticated, supported by innumerable advances, from early discoveries such as the co-linearity of DNA and protein sequence1 to modern computational technologies for enzyme design. The design of enzyme function is an exciting nexus of fundamental biochemical understanding and applied engineering. Herein, we will cover some of the methods used in discovery and design, including some ‘next generation’ tools.</abstract><doi>10.1071/MA17032</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1324-4272
ispartof Microbiology Australia, 2017-05, Vol.38 (2), p.73
issn 1324-4272
1324-4272
language eng
recordid cdi_crossref_primary_10_1071_MA17032
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Hacking nature: genetic tools for reprograming enzymes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hacking%20nature:%20genetic%20tools%20for%20reprograming%20enzymes&rft.jtitle=Microbiology%20Australia&rft.au=Hartley,%20Carol%20J&rft.date=2017-05-01&rft.volume=38&rft.issue=2&rft.spage=73&rft.pages=73-&rft.issn=1324-4272&rft.eissn=1324-4272&rft_id=info:doi/10.1071/MA17032&rft_dat=%3Ccrossref%3E10_1071_MA17032%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true