Geophysics of Stratigraphic Facies Identification: Emergent Phases of Self Organization and the Mallat Scattering Transformation

A framework for the analysis of stratigraphic facies as emergent phases of self organization will be presented. An example will be given of turbidite deposition that is governed by a system of partial differential equations. It will be shown how the boundary conditions and coefficients of the PDEs p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASEG Extended Abstracts 2015-12, Vol.2015 (1), p.1-1
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 1
container_start_page 1
container_title ASEG Extended Abstracts
container_volume 2015
description A framework for the analysis of stratigraphic facies as emergent phases of self organization will be presented. An example will be given of turbidite deposition that is governed by a system of partial differential equations. It will be shown how the boundary conditions and coefficients of the PDEs parameterize a phase space that is divided into distinct phases, or what is more commonly called facies. A method of renormalization of the texture of geologic outcrops, seismic data, and well logs will be presented that gives the scale dependance of the PDE coefficients and boundary conditions. This specification of the running coupling coefficients or S-matrix of the physics gives the form of the PDE as well as the coefficients and boundary conditions. Practically this gives a unique fingerprint, or "attribute" (technically a metric) of the geologic facies. The mathematical framework is based on the Mallat Scattering Transformation - an iterative wavelet transformation.
doi_str_mv 10.1071/ASEG2015ab011
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1071_ASEG2015ab011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1071_ASEG2015ab011</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1491-1ec6ff37ce6fa969f575535a5548e0779952ef9bfedc269a026a99c3b2d00dd63</originalsourceid><addsrcrecordid>eNptkEFLAzEQhXNQsNQevecPrCbZJtt4K6WthUqF1vMym0x2A9tNSRaknvzprq0XwdPAm-8N8x4hD5w9clbwp_l-uRaMS6gY5zdkJAQTGZMzdUcmKfmK5ZJLmQs9Il9rDKfmnLxJNDi67yP0vo5waryhKzAeE91Y7HrvvBlWoXumyyPGepDoWwMJrz5sHd3FGjr_eaEodJb2DdJXaFvo6X4w9xh9V9NDhC65EI8X8J7cOmgTTn7nmLyvlofFS7bdrTeL-TYDPtU842iUc3lhUDnQSjtZDAkkSDmdISsKraVApyuH1gilgQkFWpu8EpYxa1U-Jtn1rokhpYiuPEV_hHguOSt_Wiv_tDbwsyvvu8uvHyG2tuzh3IbohgTGpzL_3_oNEr93dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geophysics of Stratigraphic Facies Identification: Emergent Phases of Self Organization and the Mallat Scattering Transformation</title><source>Alma/SFX Local Collection</source><description>A framework for the analysis of stratigraphic facies as emergent phases of self organization will be presented. An example will be given of turbidite deposition that is governed by a system of partial differential equations. It will be shown how the boundary conditions and coefficients of the PDEs parameterize a phase space that is divided into distinct phases, or what is more commonly called facies. A method of renormalization of the texture of geologic outcrops, seismic data, and well logs will be presented that gives the scale dependance of the PDE coefficients and boundary conditions. This specification of the running coupling coefficients or S-matrix of the physics gives the form of the PDE as well as the coefficients and boundary conditions. Practically this gives a unique fingerprint, or "attribute" (technically a metric) of the geologic facies. The mathematical framework is based on the Mallat Scattering Transformation - an iterative wavelet transformation.</description><identifier>ISSN: 2202-0586</identifier><identifier>DOI: 10.1071/ASEG2015ab011</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><ispartof>ASEG Extended Abstracts, 2015-12, Vol.2015 (1), p.1-1</ispartof><rights>2015 ASEG 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><title>Geophysics of Stratigraphic Facies Identification: Emergent Phases of Self Organization and the Mallat Scattering Transformation</title><title>ASEG Extended Abstracts</title><description>A framework for the analysis of stratigraphic facies as emergent phases of self organization will be presented. An example will be given of turbidite deposition that is governed by a system of partial differential equations. It will be shown how the boundary conditions and coefficients of the PDEs parameterize a phase space that is divided into distinct phases, or what is more commonly called facies. A method of renormalization of the texture of geologic outcrops, seismic data, and well logs will be presented that gives the scale dependance of the PDE coefficients and boundary conditions. This specification of the running coupling coefficients or S-matrix of the physics gives the form of the PDE as well as the coefficients and boundary conditions. Practically this gives a unique fingerprint, or "attribute" (technically a metric) of the geologic facies. The mathematical framework is based on the Mallat Scattering Transformation - an iterative wavelet transformation.</description><issn>2202-0586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkEFLAzEQhXNQsNQevecPrCbZJtt4K6WthUqF1vMym0x2A9tNSRaknvzprq0XwdPAm-8N8x4hD5w9clbwp_l-uRaMS6gY5zdkJAQTGZMzdUcmKfmK5ZJLmQs9Il9rDKfmnLxJNDi67yP0vo5waryhKzAeE91Y7HrvvBlWoXumyyPGepDoWwMJrz5sHd3FGjr_eaEodJb2DdJXaFvo6X4w9xh9V9NDhC65EI8X8J7cOmgTTn7nmLyvlofFS7bdrTeL-TYDPtU842iUc3lhUDnQSjtZDAkkSDmdISsKraVApyuH1gilgQkFWpu8EpYxa1U-Jtn1rokhpYiuPEV_hHguOSt_Wiv_tDbwsyvvu8uvHyG2tuzh3IbohgTGpzL_3_oNEr93dw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151201</creationdate><title>Geophysics of Stratigraphic Facies Identification: Emergent Phases of Self Organization and the Mallat Scattering Transformation</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1491-1ec6ff37ce6fa969f575535a5548e0779952ef9bfedc269a026a99c3b2d00dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><collection>CrossRef</collection><jtitle>ASEG Extended Abstracts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geophysics of Stratigraphic Facies Identification: Emergent Phases of Self Organization and the Mallat Scattering Transformation</atitle><jtitle>ASEG Extended Abstracts</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>2015</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2202-0586</issn><abstract>A framework for the analysis of stratigraphic facies as emergent phases of self organization will be presented. An example will be given of turbidite deposition that is governed by a system of partial differential equations. It will be shown how the boundary conditions and coefficients of the PDEs parameterize a phase space that is divided into distinct phases, or what is more commonly called facies. A method of renormalization of the texture of geologic outcrops, seismic data, and well logs will be presented that gives the scale dependance of the PDE coefficients and boundary conditions. This specification of the running coupling coefficients or S-matrix of the physics gives the form of the PDE as well as the coefficients and boundary conditions. Practically this gives a unique fingerprint, or "attribute" (technically a metric) of the geologic facies. The mathematical framework is based on the Mallat Scattering Transformation - an iterative wavelet transformation.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1071/ASEG2015ab011</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2202-0586
ispartof ASEG Extended Abstracts, 2015-12, Vol.2015 (1), p.1-1
issn 2202-0586
language eng
recordid cdi_crossref_primary_10_1071_ASEG2015ab011
source Alma/SFX Local Collection
title Geophysics of Stratigraphic Facies Identification: Emergent Phases of Self Organization and the Mallat Scattering Transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geophysics%20of%20Stratigraphic%20Facies%20Identification:%20Emergent%20Phases%20of%20Self%20Organization%20and%20the%20Mallat%20Scattering%20Transformation&rft.jtitle=ASEG%20Extended%20Abstracts&rft.date=2015-12-01&rft.volume=2015&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2202-0586&rft_id=info:doi/10.1071/ASEG2015ab011&rft_dat=%3Ccrossref_infor%3E10_1071_ASEG2015ab011%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true