High-order recurrence relations, Hermite-Padé approximation and Nikishin systems

The study of sequences of polynomials satisfying high-order recurrence relations is connected with the asymptotic behaviour of multiple orthogonal polynomials, the convergence properties of type II Hermite-Padé approximation and eigenvalue distribution of banded Toeplitz matrices. We present some re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2018-03, Vol.209 (3), p.385-420
Hauptverfasser: Rolanía, D. Barrios, Geronimo, J. S., Lagomasino, G. López
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The study of sequences of polynomials satisfying high-order recurrence relations is connected with the asymptotic behaviour of multiple orthogonal polynomials, the convergence properties of type II Hermite-Padé approximation and eigenvalue distribution of banded Toeplitz matrices. We present some results for the case of recurrences with constant coefficients which match what is known for the Chebyshev polynomials of the first kind. In particular, under appropriate assumptions, we show that the sequence of polynomials satisfies multiple orthogonality relations with respect to a Nikishin-type system of measures. Bibliography: 20 titles.
ISSN:1064-5616
1468-4802
DOI:10.1070/SM8724