High-order recurrence relations, Hermite-Padé approximation and Nikishin systems
The study of sequences of polynomials satisfying high-order recurrence relations is connected with the asymptotic behaviour of multiple orthogonal polynomials, the convergence properties of type II Hermite-Padé approximation and eigenvalue distribution of banded Toeplitz matrices. We present some re...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2018-03, Vol.209 (3), p.385-420 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study of sequences of polynomials satisfying high-order recurrence relations is connected with the asymptotic behaviour of multiple orthogonal polynomials, the convergence properties of type II Hermite-Padé approximation and eigenvalue distribution of banded Toeplitz matrices. We present some results for the case of recurrences with constant coefficients which match what is known for the Chebyshev polynomials of the first kind. In particular, under appropriate assumptions, we show that the sequence of polynomials satisfies multiple orthogonality relations with respect to a Nikishin-type system of measures. Bibliography: 20 titles. |
---|---|
ISSN: | 1064-5616 1468-4802 |
DOI: | 10.1070/SM8724 |