Continued fractions with limit periodic coefficients

The boundary properties of functions represented by limit periodic continued fractions of a fairly general form are investigated. Such functions are shown to have no single-valued meromorphic extension to any neighbourhood of any non-isolated boundary point of the set of convergence of the continued...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2018-02, Vol.209 (2), p.187-205
1. Verfasser: Buslaev, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205
container_issue 2
container_start_page 187
container_title Sbornik. Mathematics
container_volume 209
creator Buslaev, V. I.
description The boundary properties of functions represented by limit periodic continued fractions of a fairly general form are investigated. Such functions are shown to have no single-valued meromorphic extension to any neighbourhood of any non-isolated boundary point of the set of convergence of the continued fraction. The boundary of the set of meromorphy has the property of symmetry in an external field determined by the parameters of the continued fraction. Bibliography: 26 titles.
doi_str_mv 10.1070/SM8687
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1070_SM8687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357592313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-514e3fdc9a9a33d599dbea6793161566eda9e1d0dcc2d28940dcf504913d15ce3</originalsourceid><addsrcrecordid>eNpt0EtLAzEUBeAgCtaqv2FQdDeam0wyyVKLL2hxUV2HmAemtJMxSZH-e0dGcKGrexYf58JB6BTwFeAWXy8Xgot2D02g4aJuBCb7Q8a8qRkHfoiOcl5hjBkBMUHNLHYldFtnK5-0KSF2ufoM5b1ah00oVe9SiDaYykTnfTDBdSUfowOv19md_Nwper2_e5k91vPnh6fZzbw2FItSM2gc9dZILTWllklp35zmraTAgXHurJYOLLbGEEuEbIbkGW4kUAvMODpF52Nvn-LH1uWiVnGbuuGlIpS1TBIKdFCXozIp5pycV30KG512CrD6XkSNiwzwbIQh9r9Nf9DFP2ixvFUES0UUiFb11tMv1bFpfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357592313</pqid></control><display><type>article</type><title>Continued fractions with limit periodic coefficients</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Buslaev, V. I.</creator><creatorcontrib>Buslaev, V. I.</creatorcontrib><description>The boundary properties of functions represented by limit periodic continued fractions of a fairly general form are investigated. Such functions are shown to have no single-valued meromorphic extension to any neighbourhood of any non-isolated boundary point of the set of convergence of the continued fraction. The boundary of the set of meromorphy has the property of symmetry in an external field determined by the parameters of the continued fraction. Bibliography: 26 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM8687</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>continued fractions ; Hankel determinants ; meromorphic extension ; transfinite diameter</subject><ispartof>Sbornik. Mathematics, 2018-02, Vol.209 (2), p.187-205</ispartof><rights>2018 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><rights>Copyright IOP Publishing Feb 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-514e3fdc9a9a33d599dbea6793161566eda9e1d0dcc2d28940dcf504913d15ce3</citedby><cites>FETCH-LOGICAL-c308t-514e3fdc9a9a33d599dbea6793161566eda9e1d0dcc2d28940dcf504913d15ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM8687/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824</link.rule.ids></links><search><creatorcontrib>Buslaev, V. I.</creatorcontrib><title>Continued fractions with limit periodic coefficients</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>The boundary properties of functions represented by limit periodic continued fractions of a fairly general form are investigated. Such functions are shown to have no single-valued meromorphic extension to any neighbourhood of any non-isolated boundary point of the set of convergence of the continued fraction. The boundary of the set of meromorphy has the property of symmetry in an external field determined by the parameters of the continued fraction. Bibliography: 26 titles.</description><subject>continued fractions</subject><subject>Hankel determinants</subject><subject>meromorphic extension</subject><subject>transfinite diameter</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpt0EtLAzEUBeAgCtaqv2FQdDeam0wyyVKLL2hxUV2HmAemtJMxSZH-e0dGcKGrexYf58JB6BTwFeAWXy8Xgot2D02g4aJuBCb7Q8a8qRkHfoiOcl5hjBkBMUHNLHYldFtnK5-0KSF2ufoM5b1ah00oVe9SiDaYykTnfTDBdSUfowOv19md_Nwper2_e5k91vPnh6fZzbw2FItSM2gc9dZILTWllklp35zmraTAgXHurJYOLLbGEEuEbIbkGW4kUAvMODpF52Nvn-LH1uWiVnGbuuGlIpS1TBIKdFCXozIp5pycV30KG512CrD6XkSNiwzwbIQh9r9Nf9DFP2ixvFUES0UUiFb11tMv1bFpfQ</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Buslaev, V. I.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20180201</creationdate><title>Continued fractions with limit periodic coefficients</title><author>Buslaev, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-514e3fdc9a9a33d599dbea6793161566eda9e1d0dcc2d28940dcf504913d15ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>continued fractions</topic><topic>Hankel determinants</topic><topic>meromorphic extension</topic><topic>transfinite diameter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buslaev, V. I.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buslaev, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continued fractions with limit periodic coefficients</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>209</volume><issue>2</issue><spage>187</spage><epage>205</epage><pages>187-205</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>The boundary properties of functions represented by limit periodic continued fractions of a fairly general form are investigated. Such functions are shown to have no single-valued meromorphic extension to any neighbourhood of any non-isolated boundary point of the set of convergence of the continued fraction. The boundary of the set of meromorphy has the property of symmetry in an external field determined by the parameters of the continued fraction. Bibliography: 26 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM8687</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2018-02, Vol.209 (2), p.187-205
issn 1064-5616
1468-4802
language eng
recordid cdi_crossref_primary_10_1070_SM8687
source IOP Publishing Journals; Alma/SFX Local Collection
subjects continued fractions
Hankel determinants
meromorphic extension
transfinite diameter
title Continued fractions with limit periodic coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continued%20fractions%20with%20limit%20periodic%20coefficients&rft.jtitle=Sbornik.%20Mathematics&rft.au=Buslaev,%20V.%20I.&rft.date=2018-02-01&rft.volume=209&rft.issue=2&rft.spage=187&rft.epage=205&rft.pages=187-205&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM8687&rft_dat=%3Cproquest_cross%3E2357592313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357592313&rft_id=info:pmid/&rfr_iscdi=true