Continued fractions with limit periodic coefficients
The boundary properties of functions represented by limit periodic continued fractions of a fairly general form are investigated. Such functions are shown to have no single-valued meromorphic extension to any neighbourhood of any non-isolated boundary point of the set of convergence of the continued...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2018-02, Vol.209 (2), p.187-205 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | 2 |
container_start_page | 187 |
container_title | Sbornik. Mathematics |
container_volume | 209 |
creator | Buslaev, V. I. |
description | The boundary properties of functions represented by limit periodic continued fractions of a fairly general form are investigated. Such functions are shown to have no single-valued meromorphic extension to any neighbourhood of any non-isolated boundary point of the set of convergence of the continued fraction. The boundary of the set of meromorphy has the property of symmetry in an external field determined by the parameters of the continued fraction. Bibliography: 26 titles. |
doi_str_mv | 10.1070/SM8687 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1070_SM8687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357592313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-514e3fdc9a9a33d599dbea6793161566eda9e1d0dcc2d28940dcf504913d15ce3</originalsourceid><addsrcrecordid>eNpt0EtLAzEUBeAgCtaqv2FQdDeam0wyyVKLL2hxUV2HmAemtJMxSZH-e0dGcKGrexYf58JB6BTwFeAWXy8Xgot2D02g4aJuBCb7Q8a8qRkHfoiOcl5hjBkBMUHNLHYldFtnK5-0KSF2ufoM5b1ah00oVe9SiDaYykTnfTDBdSUfowOv19md_Nwper2_e5k91vPnh6fZzbw2FItSM2gc9dZILTWllklp35zmraTAgXHurJYOLLbGEEuEbIbkGW4kUAvMODpF52Nvn-LH1uWiVnGbuuGlIpS1TBIKdFCXozIp5pycV30KG512CrD6XkSNiwzwbIQh9r9Nf9DFP2ixvFUES0UUiFb11tMv1bFpfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357592313</pqid></control><display><type>article</type><title>Continued fractions with limit periodic coefficients</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Buslaev, V. I.</creator><creatorcontrib>Buslaev, V. I.</creatorcontrib><description>The boundary properties of functions represented by limit periodic continued fractions of a fairly general form are investigated. Such functions are shown to have no single-valued meromorphic extension to any neighbourhood of any non-isolated boundary point of the set of convergence of the continued fraction. The boundary of the set of meromorphy has the property of symmetry in an external field determined by the parameters of the continued fraction. Bibliography: 26 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM8687</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>continued fractions ; Hankel determinants ; meromorphic extension ; transfinite diameter</subject><ispartof>Sbornik. Mathematics, 2018-02, Vol.209 (2), p.187-205</ispartof><rights>2018 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><rights>Copyright IOP Publishing Feb 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-514e3fdc9a9a33d599dbea6793161566eda9e1d0dcc2d28940dcf504913d15ce3</citedby><cites>FETCH-LOGICAL-c308t-514e3fdc9a9a33d599dbea6793161566eda9e1d0dcc2d28940dcf504913d15ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM8687/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824</link.rule.ids></links><search><creatorcontrib>Buslaev, V. I.</creatorcontrib><title>Continued fractions with limit periodic coefficients</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>The boundary properties of functions represented by limit periodic continued fractions of a fairly general form are investigated. Such functions are shown to have no single-valued meromorphic extension to any neighbourhood of any non-isolated boundary point of the set of convergence of the continued fraction. The boundary of the set of meromorphy has the property of symmetry in an external field determined by the parameters of the continued fraction. Bibliography: 26 titles.</description><subject>continued fractions</subject><subject>Hankel determinants</subject><subject>meromorphic extension</subject><subject>transfinite diameter</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpt0EtLAzEUBeAgCtaqv2FQdDeam0wyyVKLL2hxUV2HmAemtJMxSZH-e0dGcKGrexYf58JB6BTwFeAWXy8Xgot2D02g4aJuBCb7Q8a8qRkHfoiOcl5hjBkBMUHNLHYldFtnK5-0KSF2ufoM5b1ah00oVe9SiDaYykTnfTDBdSUfowOv19md_Nwper2_e5k91vPnh6fZzbw2FItSM2gc9dZILTWllklp35zmraTAgXHurJYOLLbGEEuEbIbkGW4kUAvMODpF52Nvn-LH1uWiVnGbuuGlIpS1TBIKdFCXozIp5pycV30KG512CrD6XkSNiwzwbIQh9r9Nf9DFP2ixvFUES0UUiFb11tMv1bFpfQ</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Buslaev, V. I.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20180201</creationdate><title>Continued fractions with limit periodic coefficients</title><author>Buslaev, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-514e3fdc9a9a33d599dbea6793161566eda9e1d0dcc2d28940dcf504913d15ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>continued fractions</topic><topic>Hankel determinants</topic><topic>meromorphic extension</topic><topic>transfinite diameter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buslaev, V. I.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buslaev, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continued fractions with limit periodic coefficients</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>209</volume><issue>2</issue><spage>187</spage><epage>205</epage><pages>187-205</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>The boundary properties of functions represented by limit periodic continued fractions of a fairly general form are investigated. Such functions are shown to have no single-valued meromorphic extension to any neighbourhood of any non-isolated boundary point of the set of convergence of the continued fraction. The boundary of the set of meromorphy has the property of symmetry in an external field determined by the parameters of the continued fraction. Bibliography: 26 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM8687</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2018-02, Vol.209 (2), p.187-205 |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_crossref_primary_10_1070_SM8687 |
source | IOP Publishing Journals; Alma/SFX Local Collection |
subjects | continued fractions Hankel determinants meromorphic extension transfinite diameter |
title | Continued fractions with limit periodic coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continued%20fractions%20with%20limit%20periodic%20coefficients&rft.jtitle=Sbornik.%20Mathematics&rft.au=Buslaev,%20V.%20I.&rft.date=2018-02-01&rft.volume=209&rft.issue=2&rft.spage=187&rft.epage=205&rft.pages=187-205&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM8687&rft_dat=%3Cproquest_cross%3E2357592313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357592313&rft_id=info:pmid/&rfr_iscdi=true |