Sobolev-orthogonal systems of functions and some of their applications

Systems of functions are considered which are associated with a given orthogonal system and are orthogonal with respect to an inner product of Sobolev type involving terms with masses concentrated at a point. Special attention is paid to such systems generated by classical orthogonal systems such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian mathematical surveys 2019-08, Vol.74 (4), p.659-733
1. Verfasser: Sharapudinov, I. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 733
container_issue 4
container_start_page 659
container_title Russian mathematical surveys
container_volume 74
creator Sharapudinov, I. I.
description Systems of functions are considered which are associated with a given orthogonal system and are orthogonal with respect to an inner product of Sobolev type involving terms with masses concentrated at a point. Special attention is paid to such systems generated by classical orthogonal systems such as the cosine system, the Haar system, and the systems of Legendre, Jacobi, and Laguerre polynomials. The approximation properties of Fourier series in Sobolev-orthogonal systems are investigated in several cases. For (generally speaking, non-linear) systems of differential equations deep connections between Sobolev-orthogonal systems and the Cauchy problem are considered. Bibliography: 54 titles.
doi_str_mv 10.1070/RM9846
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1070_RM9846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357548932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-d4e8ba74814d0be82d1c055d093ea23d756571127e8ed5de9dff45c7ebeafa983</originalsourceid><addsrcrecordid>eNpd0NtKxDAQBuAgCtZVn6EoeFfNsUkuZXFVWBE8XJe0mbhd2qYmrbBvb9cKglcDMx8_w4_QOcHXBEt88_KkFc8PUEJ4rjKuqD5ECcYszzCV-hidxLjFmOSK0QStXn3pG_jKfBg2_sN3pknjLg7QxtS71I1dNdS-i6npbBp9C_vtsIE6pKbvm7oyP-dTdORME-Hsdy7Q--rubfmQrZ_vH5e366xiRAyZ5aBKI7ki3OISFLWkwkJYrBkYyqwUuZCEUAkKrLCgrXNcVBJKMM5oxRbocs7tg_8cIQ7F1o9hejoWlAkpuNKMTupqVlXwMQZwRR_q1oRdQXCx76iYO5rgxQxr3_8l_UPfvsRkSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357548932</pqid></control><display><type>article</type><title>Sobolev-orthogonal systems of functions and some of their applications</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><source>Alma/SFX Local Collection</source><creator>Sharapudinov, I. I.</creator><creatorcontrib>Sharapudinov, I. I.</creatorcontrib><description>Systems of functions are considered which are associated with a given orthogonal system and are orthogonal with respect to an inner product of Sobolev type involving terms with masses concentrated at a point. Special attention is paid to such systems generated by classical orthogonal systems such as the cosine system, the Haar system, and the systems of Legendre, Jacobi, and Laguerre polynomials. The approximation properties of Fourier series in Sobolev-orthogonal systems are investigated in several cases. For (generally speaking, non-linear) systems of differential equations deep connections between Sobolev-orthogonal systems and the Cauchy problem are considered. Bibliography: 54 titles.</description><identifier>ISSN: 0036-0279</identifier><identifier>EISSN: 1468-4829</identifier><identifier>DOI: 10.1070/RM9846</identifier><language>eng</language><publisher>London: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>Cauchy problems ; Differential equations ; Fourier series ; Jacobi ; Laguerre polynomials ; Mathematical analysis ; Nonlinear equations ; Nonlinear systems ; Polynomials ; Sobolev-orthogonal systems; Cauchy problem for a system of ordinary differential equations; systems generated by the Haar polynomials ; the cosines ; the Legendre</subject><ispartof>Russian mathematical surveys, 2019-08, Vol.74 (4), p.659-733</ispartof><rights>2019 RAS(DoM) and LMS</rights><rights>Copyright IOP Publishing Aug 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-d4e8ba74814d0be82d1c055d093ea23d756571127e8ed5de9dff45c7ebeafa983</citedby><cites>FETCH-LOGICAL-c315t-d4e8ba74814d0be82d1c055d093ea23d756571127e8ed5de9dff45c7ebeafa983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/RM9846/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Sharapudinov, I. I.</creatorcontrib><title>Sobolev-orthogonal systems of functions and some of their applications</title><title>Russian mathematical surveys</title><addtitle>RMS</addtitle><addtitle>Russ. Math. Surv</addtitle><description>Systems of functions are considered which are associated with a given orthogonal system and are orthogonal with respect to an inner product of Sobolev type involving terms with masses concentrated at a point. Special attention is paid to such systems generated by classical orthogonal systems such as the cosine system, the Haar system, and the systems of Legendre, Jacobi, and Laguerre polynomials. The approximation properties of Fourier series in Sobolev-orthogonal systems are investigated in several cases. For (generally speaking, non-linear) systems of differential equations deep connections between Sobolev-orthogonal systems and the Cauchy problem are considered. Bibliography: 54 titles.</description><subject>Cauchy problems</subject><subject>Differential equations</subject><subject>Fourier series</subject><subject>Jacobi</subject><subject>Laguerre polynomials</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Polynomials</subject><subject>Sobolev-orthogonal systems; Cauchy problem for a system of ordinary differential equations; systems generated by the Haar polynomials</subject><subject>the cosines</subject><subject>the Legendre</subject><issn>0036-0279</issn><issn>1468-4829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0NtKxDAQBuAgCtZVn6EoeFfNsUkuZXFVWBE8XJe0mbhd2qYmrbBvb9cKglcDMx8_w4_QOcHXBEt88_KkFc8PUEJ4rjKuqD5ECcYszzCV-hidxLjFmOSK0QStXn3pG_jKfBg2_sN3pknjLg7QxtS71I1dNdS-i6npbBp9C_vtsIE6pKbvm7oyP-dTdORME-Hsdy7Q--rubfmQrZ_vH5e366xiRAyZ5aBKI7ki3OISFLWkwkJYrBkYyqwUuZCEUAkKrLCgrXNcVBJKMM5oxRbocs7tg_8cIQ7F1o9hejoWlAkpuNKMTupqVlXwMQZwRR_q1oRdQXCx76iYO5rgxQxr3_8l_UPfvsRkSA</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Sharapudinov, I. I.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201908</creationdate><title>Sobolev-orthogonal systems of functions and some of their applications</title><author>Sharapudinov, I. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-d4e8ba74814d0be82d1c055d093ea23d756571127e8ed5de9dff45c7ebeafa983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cauchy problems</topic><topic>Differential equations</topic><topic>Fourier series</topic><topic>Jacobi</topic><topic>Laguerre polynomials</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Polynomials</topic><topic>Sobolev-orthogonal systems; Cauchy problem for a system of ordinary differential equations; systems generated by the Haar polynomials</topic><topic>the cosines</topic><topic>the Legendre</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharapudinov, I. I.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Russian mathematical surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharapudinov, I. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sobolev-orthogonal systems of functions and some of their applications</atitle><jtitle>Russian mathematical surveys</jtitle><stitle>RMS</stitle><addtitle>Russ. Math. Surv</addtitle><date>2019-08</date><risdate>2019</risdate><volume>74</volume><issue>4</issue><spage>659</spage><epage>733</epage><pages>659-733</pages><issn>0036-0279</issn><eissn>1468-4829</eissn><abstract>Systems of functions are considered which are associated with a given orthogonal system and are orthogonal with respect to an inner product of Sobolev type involving terms with masses concentrated at a point. Special attention is paid to such systems generated by classical orthogonal systems such as the cosine system, the Haar system, and the systems of Legendre, Jacobi, and Laguerre polynomials. The approximation properties of Fourier series in Sobolev-orthogonal systems are investigated in several cases. For (generally speaking, non-linear) systems of differential equations deep connections between Sobolev-orthogonal systems and the Cauchy problem are considered. Bibliography: 54 titles.</abstract><cop>London</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/RM9846</doi><tpages>75</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-0279
ispartof Russian mathematical surveys, 2019-08, Vol.74 (4), p.659-733
issn 0036-0279
1468-4829
language eng
recordid cdi_crossref_primary_10_1070_RM9846
source HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals; Alma/SFX Local Collection
subjects Cauchy problems
Differential equations
Fourier series
Jacobi
Laguerre polynomials
Mathematical analysis
Nonlinear equations
Nonlinear systems
Polynomials
Sobolev-orthogonal systems
Cauchy problem for a system of ordinary differential equations
systems generated by the Haar polynomials
the cosines
the Legendre
title Sobolev-orthogonal systems of functions and some of their applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sobolev-orthogonal%20systems%20of%20functions%20and%20some%20of%20their%20applications&rft.jtitle=Russian%20mathematical%20surveys&rft.au=Sharapudinov,%20I.%20I.&rft.date=2019-08&rft.volume=74&rft.issue=4&rft.spage=659&rft.epage=733&rft.pages=659-733&rft.issn=0036-0279&rft.eissn=1468-4829&rft_id=info:doi/10.1070/RM9846&rft_dat=%3Cproquest_cross%3E2357548932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357548932&rft_id=info:pmid/&rfr_iscdi=true