Sobolev-orthogonal systems of functions and some of their applications
Systems of functions are considered which are associated with a given orthogonal system and are orthogonal with respect to an inner product of Sobolev type involving terms with masses concentrated at a point. Special attention is paid to such systems generated by classical orthogonal systems such as...
Gespeichert in:
Veröffentlicht in: | Russian mathematical surveys 2019-08, Vol.74 (4), p.659-733 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 733 |
---|---|
container_issue | 4 |
container_start_page | 659 |
container_title | Russian mathematical surveys |
container_volume | 74 |
creator | Sharapudinov, I. I. |
description | Systems of functions are considered which are associated with a given orthogonal system and are orthogonal with respect to an inner product of Sobolev type involving terms with masses concentrated at a point. Special attention is paid to such systems generated by classical orthogonal systems such as the cosine system, the Haar system, and the systems of Legendre, Jacobi, and Laguerre polynomials. The approximation properties of Fourier series in Sobolev-orthogonal systems are investigated in several cases. For (generally speaking, non-linear) systems of differential equations deep connections between Sobolev-orthogonal systems and the Cauchy problem are considered. Bibliography: 54 titles. |
doi_str_mv | 10.1070/RM9846 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1070_RM9846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357548932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-d4e8ba74814d0be82d1c055d093ea23d756571127e8ed5de9dff45c7ebeafa983</originalsourceid><addsrcrecordid>eNpd0NtKxDAQBuAgCtZVn6EoeFfNsUkuZXFVWBE8XJe0mbhd2qYmrbBvb9cKglcDMx8_w4_QOcHXBEt88_KkFc8PUEJ4rjKuqD5ECcYszzCV-hidxLjFmOSK0QStXn3pG_jKfBg2_sN3pknjLg7QxtS71I1dNdS-i6npbBp9C_vtsIE6pKbvm7oyP-dTdORME-Hsdy7Q--rubfmQrZ_vH5e366xiRAyZ5aBKI7ki3OISFLWkwkJYrBkYyqwUuZCEUAkKrLCgrXNcVBJKMM5oxRbocs7tg_8cIQ7F1o9hejoWlAkpuNKMTupqVlXwMQZwRR_q1oRdQXCx76iYO5rgxQxr3_8l_UPfvsRkSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357548932</pqid></control><display><type>article</type><title>Sobolev-orthogonal systems of functions and some of their applications</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><source>Alma/SFX Local Collection</source><creator>Sharapudinov, I. I.</creator><creatorcontrib>Sharapudinov, I. I.</creatorcontrib><description>Systems of functions are considered which are associated with a given orthogonal system and are orthogonal with respect to an inner product of Sobolev type involving terms with masses concentrated at a point. Special attention is paid to such systems generated by classical orthogonal systems such as the cosine system, the Haar system, and the systems of Legendre, Jacobi, and Laguerre polynomials. The approximation properties of Fourier series in Sobolev-orthogonal systems are investigated in several cases. For (generally speaking, non-linear) systems of differential equations deep connections between Sobolev-orthogonal systems and the Cauchy problem are considered. Bibliography: 54 titles.</description><identifier>ISSN: 0036-0279</identifier><identifier>EISSN: 1468-4829</identifier><identifier>DOI: 10.1070/RM9846</identifier><language>eng</language><publisher>London: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>Cauchy problems ; Differential equations ; Fourier series ; Jacobi ; Laguerre polynomials ; Mathematical analysis ; Nonlinear equations ; Nonlinear systems ; Polynomials ; Sobolev-orthogonal systems; Cauchy problem for a system of ordinary differential equations; systems generated by the Haar polynomials ; the cosines ; the Legendre</subject><ispartof>Russian mathematical surveys, 2019-08, Vol.74 (4), p.659-733</ispartof><rights>2019 RAS(DoM) and LMS</rights><rights>Copyright IOP Publishing Aug 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-d4e8ba74814d0be82d1c055d093ea23d756571127e8ed5de9dff45c7ebeafa983</citedby><cites>FETCH-LOGICAL-c315t-d4e8ba74814d0be82d1c055d093ea23d756571127e8ed5de9dff45c7ebeafa983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/RM9846/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Sharapudinov, I. I.</creatorcontrib><title>Sobolev-orthogonal systems of functions and some of their applications</title><title>Russian mathematical surveys</title><addtitle>RMS</addtitle><addtitle>Russ. Math. Surv</addtitle><description>Systems of functions are considered which are associated with a given orthogonal system and are orthogonal with respect to an inner product of Sobolev type involving terms with masses concentrated at a point. Special attention is paid to such systems generated by classical orthogonal systems such as the cosine system, the Haar system, and the systems of Legendre, Jacobi, and Laguerre polynomials. The approximation properties of Fourier series in Sobolev-orthogonal systems are investigated in several cases. For (generally speaking, non-linear) systems of differential equations deep connections between Sobolev-orthogonal systems and the Cauchy problem are considered. Bibliography: 54 titles.</description><subject>Cauchy problems</subject><subject>Differential equations</subject><subject>Fourier series</subject><subject>Jacobi</subject><subject>Laguerre polynomials</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Polynomials</subject><subject>Sobolev-orthogonal systems; Cauchy problem for a system of ordinary differential equations; systems generated by the Haar polynomials</subject><subject>the cosines</subject><subject>the Legendre</subject><issn>0036-0279</issn><issn>1468-4829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0NtKxDAQBuAgCtZVn6EoeFfNsUkuZXFVWBE8XJe0mbhd2qYmrbBvb9cKglcDMx8_w4_QOcHXBEt88_KkFc8PUEJ4rjKuqD5ECcYszzCV-hidxLjFmOSK0QStXn3pG_jKfBg2_sN3pknjLg7QxtS71I1dNdS-i6npbBp9C_vtsIE6pKbvm7oyP-dTdORME-Hsdy7Q--rubfmQrZ_vH5e366xiRAyZ5aBKI7ki3OISFLWkwkJYrBkYyqwUuZCEUAkKrLCgrXNcVBJKMM5oxRbocs7tg_8cIQ7F1o9hejoWlAkpuNKMTupqVlXwMQZwRR_q1oRdQXCx76iYO5rgxQxr3_8l_UPfvsRkSA</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Sharapudinov, I. I.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201908</creationdate><title>Sobolev-orthogonal systems of functions and some of their applications</title><author>Sharapudinov, I. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-d4e8ba74814d0be82d1c055d093ea23d756571127e8ed5de9dff45c7ebeafa983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cauchy problems</topic><topic>Differential equations</topic><topic>Fourier series</topic><topic>Jacobi</topic><topic>Laguerre polynomials</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Polynomials</topic><topic>Sobolev-orthogonal systems; Cauchy problem for a system of ordinary differential equations; systems generated by the Haar polynomials</topic><topic>the cosines</topic><topic>the Legendre</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharapudinov, I. I.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Russian mathematical surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharapudinov, I. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sobolev-orthogonal systems of functions and some of their applications</atitle><jtitle>Russian mathematical surveys</jtitle><stitle>RMS</stitle><addtitle>Russ. Math. Surv</addtitle><date>2019-08</date><risdate>2019</risdate><volume>74</volume><issue>4</issue><spage>659</spage><epage>733</epage><pages>659-733</pages><issn>0036-0279</issn><eissn>1468-4829</eissn><abstract>Systems of functions are considered which are associated with a given orthogonal system and are orthogonal with respect to an inner product of Sobolev type involving terms with masses concentrated at a point. Special attention is paid to such systems generated by classical orthogonal systems such as the cosine system, the Haar system, and the systems of Legendre, Jacobi, and Laguerre polynomials. The approximation properties of Fourier series in Sobolev-orthogonal systems are investigated in several cases. For (generally speaking, non-linear) systems of differential equations deep connections between Sobolev-orthogonal systems and the Cauchy problem are considered. Bibliography: 54 titles.</abstract><cop>London</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/RM9846</doi><tpages>75</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-0279 |
ispartof | Russian mathematical surveys, 2019-08, Vol.74 (4), p.659-733 |
issn | 0036-0279 1468-4829 |
language | eng |
recordid | cdi_crossref_primary_10_1070_RM9846 |
source | HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals; Alma/SFX Local Collection |
subjects | Cauchy problems Differential equations Fourier series Jacobi Laguerre polynomials Mathematical analysis Nonlinear equations Nonlinear systems Polynomials Sobolev-orthogonal systems Cauchy problem for a system of ordinary differential equations systems generated by the Haar polynomials the cosines the Legendre |
title | Sobolev-orthogonal systems of functions and some of their applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sobolev-orthogonal%20systems%20of%20functions%20and%20some%20of%20their%20applications&rft.jtitle=Russian%20mathematical%20surveys&rft.au=Sharapudinov,%20I.%20I.&rft.date=2019-08&rft.volume=74&rft.issue=4&rft.spage=659&rft.epage=733&rft.pages=659-733&rft.issn=0036-0279&rft.eissn=1468-4829&rft_id=info:doi/10.1070/RM9846&rft_dat=%3Cproquest_cross%3E2357548932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357548932&rft_id=info:pmid/&rfr_iscdi=true |