Analysis of light – current characteristics of high-power semiconductor lasers (1060 nm) in a steady-state 2D model

This paper presents a 2D model of a high-power semiconductor laser, which takes into account carrier transport across the layers of its heterostructure and longitudinal spatial hole burning (LSHB), an effect related to the nonuniform gain distribution along the cavity axis. We show that the use of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum electronics (Woodbury, N.Y.) N.Y.), 2022-04, Vol.52 (4), p.343-350
Hauptverfasser: Slipchenko, S.O., Golovin, V.S., Soboleva, O.S., Lamkin, I.A., Pikhtin, N.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue 4
container_start_page 343
container_title Quantum electronics (Woodbury, N.Y.)
container_volume 52
creator Slipchenko, S.O.
Golovin, V.S.
Soboleva, O.S.
Lamkin, I.A.
Pikhtin, N.A.
description This paper presents a 2D model of a high-power semiconductor laser, which takes into account carrier transport across the layers of its heterostructure and longitudinal spatial hole burning (LSHB), an effect related to the nonuniform gain distribution along the cavity axis. We show that the use of the 2D model which takes into account carrier transport across the layers of the heterostructure allows an appreciable contribution of LSHB to saturation of light – current characteristics to be demonstrated. The LSHB effect, causing a decrease in the output optical power of semiconductor lasers, is shown to be stronger at high drive currents and low output mirror reflectivities. In the case of high drive currents, the LSHB-induced drop in power is related to the faster growth of internal optical and recombination losses because of the nonuniform current density distribution along the cavity axis, such that the highest current density can be almost twice the lowest one. LSHB is shown to increase the power stored in a Fabry – Perot cavity, which is an additional mechanism reducing the output optical power.
doi_str_mv 10.1070/QEL18015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1070_QEL18015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649297887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c214t-17532cb9304dc295ec52e1e789cbd662b5f0fe4dc2a95b321ae6c2a47331d3c93</originalsourceid><addsrcrecordid>eNpl0M1KxDAQB_AgCi6r4CME9LAeqvlskuOyrh-wIIKeS5qmbqRtapIie_MdfEOfxK6rePA0A_NjhvkDcILRBUYCXT4sV1gizPfABLNcZkwotT_2KKeZkFgeguMYXYk4Y4jLXE7AMO90s4kuQl_Dxj2vE_x8_4BmCMF2CZq1DtokG1xMznyj9Yiy3r_ZAKNtnfFdNZjkA2x0tCHC2XgNwa49h66DGsZkdbXJYtLJQnIFW1_Z5ggc1LqJ9vinTsHT9fJxcZut7m_uFvNVZghmKcOCU2JKRRGrDFHcGk4stkIqU1Z5Tkpeo9puZ1rxkhKsbT72TFCKK2oUnYLT3d4--NfBxlS8-CGMH8eC5EwRJaQUo5rtlAk-xmDrog-u1WFTYFRscy1-cx3p2Y463__t-se-AGKdddc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649297887</pqid></control><display><type>article</type><title>Analysis of light – current characteristics of high-power semiconductor lasers (1060 nm) in a steady-state 2D model</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Slipchenko, S.O. ; Golovin, V.S. ; Soboleva, O.S. ; Lamkin, I.A. ; Pikhtin, N.A.</creator><creatorcontrib>Slipchenko, S.O. ; Golovin, V.S. ; Soboleva, O.S. ; Lamkin, I.A. ; Pikhtin, N.A.</creatorcontrib><description>This paper presents a 2D model of a high-power semiconductor laser, which takes into account carrier transport across the layers of its heterostructure and longitudinal spatial hole burning (LSHB), an effect related to the nonuniform gain distribution along the cavity axis. We show that the use of the 2D model which takes into account carrier transport across the layers of the heterostructure allows an appreciable contribution of LSHB to saturation of light – current characteristics to be demonstrated. The LSHB effect, causing a decrease in the output optical power of semiconductor lasers, is shown to be stronger at high drive currents and low output mirror reflectivities. In the case of high drive currents, the LSHB-induced drop in power is related to the faster growth of internal optical and recombination losses because of the nonuniform current density distribution along the cavity axis, such that the highest current density can be almost twice the lowest one. LSHB is shown to increase the power stored in a Fabry – Perot cavity, which is an additional mechanism reducing the output optical power.</description><identifier>ISSN: 1063-7818</identifier><identifier>EISSN: 1468-4799</identifier><identifier>DOI: 10.1070/QEL18015</identifier><language>eng</language><publisher>Bristol: Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</publisher><subject>Carrier transport ; Current density ; Density distribution ; drift-diffusion transport ; Heterostructures ; high-power semiconductor lasers ; Hole burning ; laser diode ; longitudinal hole burning ; model of a semiconductor laser ; rate equations ; Semiconductor lasers ; Steady state models ; Two dimensional models</subject><ispartof>Quantum electronics (Woodbury, N.Y.), 2022-04, Vol.52 (4), p.343-350</ispartof><rights>2022 Kvantovaya Elektronika and IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c214t-17532cb9304dc295ec52e1e789cbd662b5f0fe4dc2a95b321ae6c2a47331d3c93</citedby><cites>FETCH-LOGICAL-c214t-17532cb9304dc295ec52e1e789cbd662b5f0fe4dc2a95b321ae6c2a47331d3c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/QEL18015/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Slipchenko, S.O.</creatorcontrib><creatorcontrib>Golovin, V.S.</creatorcontrib><creatorcontrib>Soboleva, O.S.</creatorcontrib><creatorcontrib>Lamkin, I.A.</creatorcontrib><creatorcontrib>Pikhtin, N.A.</creatorcontrib><title>Analysis of light – current characteristics of high-power semiconductor lasers (1060 nm) in a steady-state 2D model</title><title>Quantum electronics (Woodbury, N.Y.)</title><addtitle>Quantum Electron</addtitle><description>This paper presents a 2D model of a high-power semiconductor laser, which takes into account carrier transport across the layers of its heterostructure and longitudinal spatial hole burning (LSHB), an effect related to the nonuniform gain distribution along the cavity axis. We show that the use of the 2D model which takes into account carrier transport across the layers of the heterostructure allows an appreciable contribution of LSHB to saturation of light – current characteristics to be demonstrated. The LSHB effect, causing a decrease in the output optical power of semiconductor lasers, is shown to be stronger at high drive currents and low output mirror reflectivities. In the case of high drive currents, the LSHB-induced drop in power is related to the faster growth of internal optical and recombination losses because of the nonuniform current density distribution along the cavity axis, such that the highest current density can be almost twice the lowest one. LSHB is shown to increase the power stored in a Fabry – Perot cavity, which is an additional mechanism reducing the output optical power.</description><subject>Carrier transport</subject><subject>Current density</subject><subject>Density distribution</subject><subject>drift-diffusion transport</subject><subject>Heterostructures</subject><subject>high-power semiconductor lasers</subject><subject>Hole burning</subject><subject>laser diode</subject><subject>longitudinal hole burning</subject><subject>model of a semiconductor laser</subject><subject>rate equations</subject><subject>Semiconductor lasers</subject><subject>Steady state models</subject><subject>Two dimensional models</subject><issn>1063-7818</issn><issn>1468-4799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpl0M1KxDAQB_AgCi6r4CME9LAeqvlskuOyrh-wIIKeS5qmbqRtapIie_MdfEOfxK6rePA0A_NjhvkDcILRBUYCXT4sV1gizPfABLNcZkwotT_2KKeZkFgeguMYXYk4Y4jLXE7AMO90s4kuQl_Dxj2vE_x8_4BmCMF2CZq1DtokG1xMznyj9Yiy3r_ZAKNtnfFdNZjkA2x0tCHC2XgNwa49h66DGsZkdbXJYtLJQnIFW1_Z5ggc1LqJ9vinTsHT9fJxcZut7m_uFvNVZghmKcOCU2JKRRGrDFHcGk4stkIqU1Z5Tkpeo9puZ1rxkhKsbT72TFCKK2oUnYLT3d4--NfBxlS8-CGMH8eC5EwRJaQUo5rtlAk-xmDrog-u1WFTYFRscy1-cx3p2Y463__t-se-AGKdddc</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Slipchenko, S.O.</creator><creator>Golovin, V.S.</creator><creator>Soboleva, O.S.</creator><creator>Lamkin, I.A.</creator><creator>Pikhtin, N.A.</creator><general>Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20220401</creationdate><title>Analysis of light – current characteristics of high-power semiconductor lasers (1060 nm) in a steady-state 2D model</title><author>Slipchenko, S.O. ; Golovin, V.S. ; Soboleva, O.S. ; Lamkin, I.A. ; Pikhtin, N.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c214t-17532cb9304dc295ec52e1e789cbd662b5f0fe4dc2a95b321ae6c2a47331d3c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carrier transport</topic><topic>Current density</topic><topic>Density distribution</topic><topic>drift-diffusion transport</topic><topic>Heterostructures</topic><topic>high-power semiconductor lasers</topic><topic>Hole burning</topic><topic>laser diode</topic><topic>longitudinal hole burning</topic><topic>model of a semiconductor laser</topic><topic>rate equations</topic><topic>Semiconductor lasers</topic><topic>Steady state models</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slipchenko, S.O.</creatorcontrib><creatorcontrib>Golovin, V.S.</creatorcontrib><creatorcontrib>Soboleva, O.S.</creatorcontrib><creatorcontrib>Lamkin, I.A.</creatorcontrib><creatorcontrib>Pikhtin, N.A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slipchenko, S.O.</au><au>Golovin, V.S.</au><au>Soboleva, O.S.</au><au>Lamkin, I.A.</au><au>Pikhtin, N.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of light – current characteristics of high-power semiconductor lasers (1060 nm) in a steady-state 2D model</atitle><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle><addtitle>Quantum Electron</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>52</volume><issue>4</issue><spage>343</spage><epage>350</epage><pages>343-350</pages><issn>1063-7818</issn><eissn>1468-4799</eissn><abstract>This paper presents a 2D model of a high-power semiconductor laser, which takes into account carrier transport across the layers of its heterostructure and longitudinal spatial hole burning (LSHB), an effect related to the nonuniform gain distribution along the cavity axis. We show that the use of the 2D model which takes into account carrier transport across the layers of the heterostructure allows an appreciable contribution of LSHB to saturation of light – current characteristics to be demonstrated. The LSHB effect, causing a decrease in the output optical power of semiconductor lasers, is shown to be stronger at high drive currents and low output mirror reflectivities. In the case of high drive currents, the LSHB-induced drop in power is related to the faster growth of internal optical and recombination losses because of the nonuniform current density distribution along the cavity axis, such that the highest current density can be almost twice the lowest one. LSHB is shown to increase the power stored in a Fabry – Perot cavity, which is an additional mechanism reducing the output optical power.</abstract><cop>Bristol</cop><pub>Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</pub><doi>10.1070/QEL18015</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7818
ispartof Quantum electronics (Woodbury, N.Y.), 2022-04, Vol.52 (4), p.343-350
issn 1063-7818
1468-4799
language eng
recordid cdi_crossref_primary_10_1070_QEL18015
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Carrier transport
Current density
Density distribution
drift-diffusion transport
Heterostructures
high-power semiconductor lasers
Hole burning
laser diode
longitudinal hole burning
model of a semiconductor laser
rate equations
Semiconductor lasers
Steady state models
Two dimensional models
title Analysis of light – current characteristics of high-power semiconductor lasers (1060 nm) in a steady-state 2D model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20light%20%E2%80%93%20current%20characteristics%20of%20high-power%20semiconductor%20lasers%20(1060%20nm)%20in%20a%20steady-state%202D%20model&rft.jtitle=Quantum%20electronics%20(Woodbury,%20N.Y.)&rft.au=Slipchenko,%20S.O.&rft.date=2022-04-01&rft.volume=52&rft.issue=4&rft.spage=343&rft.epage=350&rft.pages=343-350&rft.issn=1063-7818&rft.eissn=1468-4799&rft_id=info:doi/10.1070/QEL18015&rft_dat=%3Cproquest_cross%3E2649297887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649297887&rft_id=info:pmid/&rfr_iscdi=true