Analysis of light – current characteristics of high-power semiconductor lasers (1060 nm) in a steady-state 2D model
This paper presents a 2D model of a high-power semiconductor laser, which takes into account carrier transport across the layers of its heterostructure and longitudinal spatial hole burning (LSHB), an effect related to the nonuniform gain distribution along the cavity axis. We show that the use of t...
Gespeichert in:
Veröffentlicht in: | Quantum electronics (Woodbury, N.Y.) N.Y.), 2022-04, Vol.52 (4), p.343-350 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 350 |
---|---|
container_issue | 4 |
container_start_page | 343 |
container_title | Quantum electronics (Woodbury, N.Y.) |
container_volume | 52 |
creator | Slipchenko, S.O. Golovin, V.S. Soboleva, O.S. Lamkin, I.A. Pikhtin, N.A. |
description | This paper presents a 2D model of a high-power semiconductor laser, which takes into account carrier transport across the layers of its heterostructure and longitudinal spatial hole burning (LSHB), an effect related to the nonuniform gain distribution along the cavity axis. We show that the use of the 2D model which takes into account carrier transport across the layers of the heterostructure allows an appreciable contribution of LSHB to saturation of light – current characteristics to be demonstrated. The LSHB effect, causing a decrease in the output optical power of semiconductor lasers, is shown to be stronger at high drive currents and low output mirror reflectivities. In the case of high drive currents, the LSHB-induced drop in power is related to the faster growth of internal optical and recombination losses because of the nonuniform current density distribution along the cavity axis, such that the highest current density can be almost twice the lowest one. LSHB is shown to increase the power stored in a Fabry – Perot cavity, which is an additional mechanism reducing the output optical power. |
doi_str_mv | 10.1070/QEL18015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1070_QEL18015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649297887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c214t-17532cb9304dc295ec52e1e789cbd662b5f0fe4dc2a95b321ae6c2a47331d3c93</originalsourceid><addsrcrecordid>eNpl0M1KxDAQB_AgCi6r4CME9LAeqvlskuOyrh-wIIKeS5qmbqRtapIie_MdfEOfxK6rePA0A_NjhvkDcILRBUYCXT4sV1gizPfABLNcZkwotT_2KKeZkFgeguMYXYk4Y4jLXE7AMO90s4kuQl_Dxj2vE_x8_4BmCMF2CZq1DtokG1xMznyj9Yiy3r_ZAKNtnfFdNZjkA2x0tCHC2XgNwa49h66DGsZkdbXJYtLJQnIFW1_Z5ggc1LqJ9vinTsHT9fJxcZut7m_uFvNVZghmKcOCU2JKRRGrDFHcGk4stkIqU1Z5Tkpeo9puZ1rxkhKsbT72TFCKK2oUnYLT3d4--NfBxlS8-CGMH8eC5EwRJaQUo5rtlAk-xmDrog-u1WFTYFRscy1-cx3p2Y463__t-se-AGKdddc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649297887</pqid></control><display><type>article</type><title>Analysis of light – current characteristics of high-power semiconductor lasers (1060 nm) in a steady-state 2D model</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Slipchenko, S.O. ; Golovin, V.S. ; Soboleva, O.S. ; Lamkin, I.A. ; Pikhtin, N.A.</creator><creatorcontrib>Slipchenko, S.O. ; Golovin, V.S. ; Soboleva, O.S. ; Lamkin, I.A. ; Pikhtin, N.A.</creatorcontrib><description>This paper presents a 2D model of a high-power semiconductor laser, which takes into account carrier transport across the layers of its heterostructure and longitudinal spatial hole burning (LSHB), an effect related to the nonuniform gain distribution along the cavity axis. We show that the use of the 2D model which takes into account carrier transport across the layers of the heterostructure allows an appreciable contribution of LSHB to saturation of light – current characteristics to be demonstrated. The LSHB effect, causing a decrease in the output optical power of semiconductor lasers, is shown to be stronger at high drive currents and low output mirror reflectivities. In the case of high drive currents, the LSHB-induced drop in power is related to the faster growth of internal optical and recombination losses because of the nonuniform current density distribution along the cavity axis, such that the highest current density can be almost twice the lowest one. LSHB is shown to increase the power stored in a Fabry – Perot cavity, which is an additional mechanism reducing the output optical power.</description><identifier>ISSN: 1063-7818</identifier><identifier>EISSN: 1468-4799</identifier><identifier>DOI: 10.1070/QEL18015</identifier><language>eng</language><publisher>Bristol: Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</publisher><subject>Carrier transport ; Current density ; Density distribution ; drift-diffusion transport ; Heterostructures ; high-power semiconductor lasers ; Hole burning ; laser diode ; longitudinal hole burning ; model of a semiconductor laser ; rate equations ; Semiconductor lasers ; Steady state models ; Two dimensional models</subject><ispartof>Quantum electronics (Woodbury, N.Y.), 2022-04, Vol.52 (4), p.343-350</ispartof><rights>2022 Kvantovaya Elektronika and IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c214t-17532cb9304dc295ec52e1e789cbd662b5f0fe4dc2a95b321ae6c2a47331d3c93</citedby><cites>FETCH-LOGICAL-c214t-17532cb9304dc295ec52e1e789cbd662b5f0fe4dc2a95b321ae6c2a47331d3c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/QEL18015/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Slipchenko, S.O.</creatorcontrib><creatorcontrib>Golovin, V.S.</creatorcontrib><creatorcontrib>Soboleva, O.S.</creatorcontrib><creatorcontrib>Lamkin, I.A.</creatorcontrib><creatorcontrib>Pikhtin, N.A.</creatorcontrib><title>Analysis of light – current characteristics of high-power semiconductor lasers (1060 nm) in a steady-state 2D model</title><title>Quantum electronics (Woodbury, N.Y.)</title><addtitle>Quantum Electron</addtitle><description>This paper presents a 2D model of a high-power semiconductor laser, which takes into account carrier transport across the layers of its heterostructure and longitudinal spatial hole burning (LSHB), an effect related to the nonuniform gain distribution along the cavity axis. We show that the use of the 2D model which takes into account carrier transport across the layers of the heterostructure allows an appreciable contribution of LSHB to saturation of light – current characteristics to be demonstrated. The LSHB effect, causing a decrease in the output optical power of semiconductor lasers, is shown to be stronger at high drive currents and low output mirror reflectivities. In the case of high drive currents, the LSHB-induced drop in power is related to the faster growth of internal optical and recombination losses because of the nonuniform current density distribution along the cavity axis, such that the highest current density can be almost twice the lowest one. LSHB is shown to increase the power stored in a Fabry – Perot cavity, which is an additional mechanism reducing the output optical power.</description><subject>Carrier transport</subject><subject>Current density</subject><subject>Density distribution</subject><subject>drift-diffusion transport</subject><subject>Heterostructures</subject><subject>high-power semiconductor lasers</subject><subject>Hole burning</subject><subject>laser diode</subject><subject>longitudinal hole burning</subject><subject>model of a semiconductor laser</subject><subject>rate equations</subject><subject>Semiconductor lasers</subject><subject>Steady state models</subject><subject>Two dimensional models</subject><issn>1063-7818</issn><issn>1468-4799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpl0M1KxDAQB_AgCi6r4CME9LAeqvlskuOyrh-wIIKeS5qmbqRtapIie_MdfEOfxK6rePA0A_NjhvkDcILRBUYCXT4sV1gizPfABLNcZkwotT_2KKeZkFgeguMYXYk4Y4jLXE7AMO90s4kuQl_Dxj2vE_x8_4BmCMF2CZq1DtokG1xMznyj9Yiy3r_ZAKNtnfFdNZjkA2x0tCHC2XgNwa49h66DGsZkdbXJYtLJQnIFW1_Z5ggc1LqJ9vinTsHT9fJxcZut7m_uFvNVZghmKcOCU2JKRRGrDFHcGk4stkIqU1Z5Tkpeo9puZ1rxkhKsbT72TFCKK2oUnYLT3d4--NfBxlS8-CGMH8eC5EwRJaQUo5rtlAk-xmDrog-u1WFTYFRscy1-cx3p2Y463__t-se-AGKdddc</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Slipchenko, S.O.</creator><creator>Golovin, V.S.</creator><creator>Soboleva, O.S.</creator><creator>Lamkin, I.A.</creator><creator>Pikhtin, N.A.</creator><general>Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20220401</creationdate><title>Analysis of light – current characteristics of high-power semiconductor lasers (1060 nm) in a steady-state 2D model</title><author>Slipchenko, S.O. ; Golovin, V.S. ; Soboleva, O.S. ; Lamkin, I.A. ; Pikhtin, N.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c214t-17532cb9304dc295ec52e1e789cbd662b5f0fe4dc2a95b321ae6c2a47331d3c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carrier transport</topic><topic>Current density</topic><topic>Density distribution</topic><topic>drift-diffusion transport</topic><topic>Heterostructures</topic><topic>high-power semiconductor lasers</topic><topic>Hole burning</topic><topic>laser diode</topic><topic>longitudinal hole burning</topic><topic>model of a semiconductor laser</topic><topic>rate equations</topic><topic>Semiconductor lasers</topic><topic>Steady state models</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slipchenko, S.O.</creatorcontrib><creatorcontrib>Golovin, V.S.</creatorcontrib><creatorcontrib>Soboleva, O.S.</creatorcontrib><creatorcontrib>Lamkin, I.A.</creatorcontrib><creatorcontrib>Pikhtin, N.A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slipchenko, S.O.</au><au>Golovin, V.S.</au><au>Soboleva, O.S.</au><au>Lamkin, I.A.</au><au>Pikhtin, N.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of light – current characteristics of high-power semiconductor lasers (1060 nm) in a steady-state 2D model</atitle><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle><addtitle>Quantum Electron</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>52</volume><issue>4</issue><spage>343</spage><epage>350</epage><pages>343-350</pages><issn>1063-7818</issn><eissn>1468-4799</eissn><abstract>This paper presents a 2D model of a high-power semiconductor laser, which takes into account carrier transport across the layers of its heterostructure and longitudinal spatial hole burning (LSHB), an effect related to the nonuniform gain distribution along the cavity axis. We show that the use of the 2D model which takes into account carrier transport across the layers of the heterostructure allows an appreciable contribution of LSHB to saturation of light – current characteristics to be demonstrated. The LSHB effect, causing a decrease in the output optical power of semiconductor lasers, is shown to be stronger at high drive currents and low output mirror reflectivities. In the case of high drive currents, the LSHB-induced drop in power is related to the faster growth of internal optical and recombination losses because of the nonuniform current density distribution along the cavity axis, such that the highest current density can be almost twice the lowest one. LSHB is shown to increase the power stored in a Fabry – Perot cavity, which is an additional mechanism reducing the output optical power.</abstract><cop>Bristol</cop><pub>Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</pub><doi>10.1070/QEL18015</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7818 |
ispartof | Quantum electronics (Woodbury, N.Y.), 2022-04, Vol.52 (4), p.343-350 |
issn | 1063-7818 1468-4799 |
language | eng |
recordid | cdi_crossref_primary_10_1070_QEL18015 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Carrier transport Current density Density distribution drift-diffusion transport Heterostructures high-power semiconductor lasers Hole burning laser diode longitudinal hole burning model of a semiconductor laser rate equations Semiconductor lasers Steady state models Two dimensional models |
title | Analysis of light – current characteristics of high-power semiconductor lasers (1060 nm) in a steady-state 2D model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20light%20%E2%80%93%20current%20characteristics%20of%20high-power%20semiconductor%20lasers%20(1060%20nm)%20in%20a%20steady-state%202D%20model&rft.jtitle=Quantum%20electronics%20(Woodbury,%20N.Y.)&rft.au=Slipchenko,%20S.O.&rft.date=2022-04-01&rft.volume=52&rft.issue=4&rft.spage=343&rft.epage=350&rft.pages=343-350&rft.issn=1063-7818&rft.eissn=1468-4799&rft_id=info:doi/10.1070/QEL18015&rft_dat=%3Cproquest_cross%3E2649297887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649297887&rft_id=info:pmid/&rfr_iscdi=true |