The spectral method and ergodic theorems for general Markov chains

We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris-Markov chains in the case when the return time to some fix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiya. Mathematics 2015-01, Vol.79 (2), p.311-345
1. Verfasser: Nagaev, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 345
container_issue 2
container_start_page 311
container_title Izvestiya. Mathematics
container_volume 79
creator Nagaev, S. V.
description We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris-Markov chains in the case when the return time to some fixed set has finite expectation. Our conditions for the transition function are more general than those used by Athreya-Ney and Nummelin. Unlike them, we impose restrictions not on the original transition function but on the transition function of an embedded Markov chain constructed from the return times to the fixed set mentioned above. The proof uses the spectral theory of linear operators on a Banach space.
doi_str_mv 10.1070/IM2015v079n02ABEH002744
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1070_IM2015v079n02ABEH002744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835574266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-18b89e707dc3f72581092b0d9aa82db2d183256027a75fd2173e46ba2466700f3</originalsourceid><addsrcrecordid>eNqFkD9PwzAUxC0EEqXwGfDAwBJ4_hM7Gduq0EqtWAoDi-XETpOSxMFOK_HtSVVGENO74Xene4fQLYEHAhIel2sKJD6ATFugk-l8AUAl52doRLhIIp4QOB80CB7FgtFLdBXCDgA4J2yEppvS4tDZvPe6xo3tS2ewbg22futMleO-tM7bJuDCeby1rT1ya-0_3AHnpa7acI0uCl0He_Nzx-j1ab6ZLaLVy_NyNllFOROsj0iSJamVIE3OCknjoVdKMzCp1gk1GTUkYTQWQ3kt48JQIpnlItOUCyEBCjZG96fczrvPvQ29aqqQ27rWrXX7oAZ_HEtOhRhQeUJz70LwtlCdrxrtvxQBdVxN_bHa4Lw7OSvXqZ3b-3Z4SS3f35RMFVWMENWZYxf2C_Zf-DcDMHra</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835574266</pqid></control><display><type>article</type><title>The spectral method and ergodic theorems for general Markov chains</title><source>Institute of Physics Journals</source><source>Alma/SFX Local Collection</source><creator>Nagaev, S. V.</creator><creatorcontrib>Nagaev, S. V.</creatorcontrib><description>We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris-Markov chains in the case when the return time to some fixed set has finite expectation. Our conditions for the transition function are more general than those used by Athreya-Ney and Nummelin. Unlike them, we impose restrictions not on the original transition function but on the transition function of an embedded Markov chain constructed from the return times to the fixed set mentioned above. The proof uses the spectral theory of linear operators on a Banach space.</description><identifier>ISSN: 1064-5632</identifier><identifier>EISSN: 1468-4810</identifier><identifier>DOI: 10.1070/IM2015v079n02ABEH002744</identifier><language>eng</language><publisher>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>embedded Markov chain ; Ergodic processes ; Functions (mathematics) ; Linear operators ; Markov chains ; Mathematical analysis ; resolvent ; spectral method ; Spectral methods ; stationary distribution ; Theorem proving ; Theorems ; uniform ergodicity</subject><ispartof>Izvestiya. Mathematics, 2015-01, Vol.79 (2), p.311-345</ispartof><rights>2015 RAS(DoM) and LMS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-18b89e707dc3f72581092b0d9aa82db2d183256027a75fd2173e46ba2466700f3</citedby><cites>FETCH-LOGICAL-c363t-18b89e707dc3f72581092b0d9aa82db2d183256027a75fd2173e46ba2466700f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/IM2015v079n02ABEH002744/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Nagaev, S. V.</creatorcontrib><title>The spectral method and ergodic theorems for general Markov chains</title><title>Izvestiya. Mathematics</title><addtitle>IZV</addtitle><addtitle>Izv. Math</addtitle><description>We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris-Markov chains in the case when the return time to some fixed set has finite expectation. Our conditions for the transition function are more general than those used by Athreya-Ney and Nummelin. Unlike them, we impose restrictions not on the original transition function but on the transition function of an embedded Markov chain constructed from the return times to the fixed set mentioned above. The proof uses the spectral theory of linear operators on a Banach space.</description><subject>embedded Markov chain</subject><subject>Ergodic processes</subject><subject>Functions (mathematics)</subject><subject>Linear operators</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>resolvent</subject><subject>spectral method</subject><subject>Spectral methods</subject><subject>stationary distribution</subject><subject>Theorem proving</subject><subject>Theorems</subject><subject>uniform ergodicity</subject><issn>1064-5632</issn><issn>1468-4810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAUxC0EEqXwGfDAwBJ4_hM7Gduq0EqtWAoDi-XETpOSxMFOK_HtSVVGENO74Xene4fQLYEHAhIel2sKJD6ATFugk-l8AUAl52doRLhIIp4QOB80CB7FgtFLdBXCDgA4J2yEppvS4tDZvPe6xo3tS2ewbg22futMleO-tM7bJuDCeby1rT1ya-0_3AHnpa7acI0uCl0He_Nzx-j1ab6ZLaLVy_NyNllFOROsj0iSJamVIE3OCknjoVdKMzCp1gk1GTUkYTQWQ3kt48JQIpnlItOUCyEBCjZG96fczrvPvQ29aqqQ27rWrXX7oAZ_HEtOhRhQeUJz70LwtlCdrxrtvxQBdVxN_bHa4Lw7OSvXqZ3b-3Z4SS3f35RMFVWMENWZYxf2C_Zf-DcDMHra</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Nagaev, S. V.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>The spectral method and ergodic theorems for general Markov chains</title><author>Nagaev, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-18b89e707dc3f72581092b0d9aa82db2d183256027a75fd2173e46ba2466700f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>embedded Markov chain</topic><topic>Ergodic processes</topic><topic>Functions (mathematics)</topic><topic>Linear operators</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>resolvent</topic><topic>spectral method</topic><topic>Spectral methods</topic><topic>stationary distribution</topic><topic>Theorem proving</topic><topic>Theorems</topic><topic>uniform ergodicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagaev, S. V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Izvestiya. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagaev, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The spectral method and ergodic theorems for general Markov chains</atitle><jtitle>Izvestiya. Mathematics</jtitle><stitle>IZV</stitle><addtitle>Izv. Math</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>79</volume><issue>2</issue><spage>311</spage><epage>345</epage><pages>311-345</pages><issn>1064-5632</issn><eissn>1468-4810</eissn><abstract>We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris-Markov chains in the case when the return time to some fixed set has finite expectation. Our conditions for the transition function are more general than those used by Athreya-Ney and Nummelin. Unlike them, we impose restrictions not on the original transition function but on the transition function of an embedded Markov chain constructed from the return times to the fixed set mentioned above. The proof uses the spectral theory of linear operators on a Banach space.</abstract><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/IM2015v079n02ABEH002744</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5632
ispartof Izvestiya. Mathematics, 2015-01, Vol.79 (2), p.311-345
issn 1064-5632
1468-4810
language eng
recordid cdi_crossref_primary_10_1070_IM2015v079n02ABEH002744
source Institute of Physics Journals; Alma/SFX Local Collection
subjects embedded Markov chain
Ergodic processes
Functions (mathematics)
Linear operators
Markov chains
Mathematical analysis
resolvent
spectral method
Spectral methods
stationary distribution
Theorem proving
Theorems
uniform ergodicity
title The spectral method and ergodic theorems for general Markov chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20spectral%20method%20and%20ergodic%20theorems%20for%20general%20Markov%20chains&rft.jtitle=Izvestiya.%20Mathematics&rft.au=Nagaev,%20S.%20V.&rft.date=2015-01-01&rft.volume=79&rft.issue=2&rft.spage=311&rft.epage=345&rft.pages=311-345&rft.issn=1064-5632&rft.eissn=1468-4810&rft_id=info:doi/10.1070/IM2015v079n02ABEH002744&rft_dat=%3Cproquest_cross%3E1835574266%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835574266&rft_id=info:pmid/&rfr_iscdi=true