The spectral method and ergodic theorems for general Markov chains
We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris-Markov chains in the case when the return time to some fix...
Gespeichert in:
Veröffentlicht in: | Izvestiya. Mathematics 2015-01, Vol.79 (2), p.311-345 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 345 |
---|---|
container_issue | 2 |
container_start_page | 311 |
container_title | Izvestiya. Mathematics |
container_volume | 79 |
creator | Nagaev, S. V. |
description | We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris-Markov chains in the case when the return time to some fixed set has finite expectation. Our conditions for the transition function are more general than those used by Athreya-Ney and Nummelin. Unlike them, we impose restrictions not on the original transition function but on the transition function of an embedded Markov chain constructed from the return times to the fixed set mentioned above. The proof uses the spectral theory of linear operators on a Banach space. |
doi_str_mv | 10.1070/IM2015v079n02ABEH002744 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1070_IM2015v079n02ABEH002744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835574266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-18b89e707dc3f72581092b0d9aa82db2d183256027a75fd2173e46ba2466700f3</originalsourceid><addsrcrecordid>eNqFkD9PwzAUxC0EEqXwGfDAwBJ4_hM7Gduq0EqtWAoDi-XETpOSxMFOK_HtSVVGENO74Xene4fQLYEHAhIel2sKJD6ATFugk-l8AUAl52doRLhIIp4QOB80CB7FgtFLdBXCDgA4J2yEppvS4tDZvPe6xo3tS2ewbg22futMleO-tM7bJuDCeby1rT1ya-0_3AHnpa7acI0uCl0He_Nzx-j1ab6ZLaLVy_NyNllFOROsj0iSJamVIE3OCknjoVdKMzCp1gk1GTUkYTQWQ3kt48JQIpnlItOUCyEBCjZG96fczrvPvQ29aqqQ27rWrXX7oAZ_HEtOhRhQeUJz70LwtlCdrxrtvxQBdVxN_bHa4Lw7OSvXqZ3b-3Z4SS3f35RMFVWMENWZYxf2C_Zf-DcDMHra</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835574266</pqid></control><display><type>article</type><title>The spectral method and ergodic theorems for general Markov chains</title><source>Institute of Physics Journals</source><source>Alma/SFX Local Collection</source><creator>Nagaev, S. V.</creator><creatorcontrib>Nagaev, S. V.</creatorcontrib><description>We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris-Markov chains in the case when the return time to some fixed set has finite expectation. Our conditions for the transition function are more general than those used by Athreya-Ney and Nummelin. Unlike them, we impose restrictions not on the original transition function but on the transition function of an embedded Markov chain constructed from the return times to the fixed set mentioned above. The proof uses the spectral theory of linear operators on a Banach space.</description><identifier>ISSN: 1064-5632</identifier><identifier>EISSN: 1468-4810</identifier><identifier>DOI: 10.1070/IM2015v079n02ABEH002744</identifier><language>eng</language><publisher>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>embedded Markov chain ; Ergodic processes ; Functions (mathematics) ; Linear operators ; Markov chains ; Mathematical analysis ; resolvent ; spectral method ; Spectral methods ; stationary distribution ; Theorem proving ; Theorems ; uniform ergodicity</subject><ispartof>Izvestiya. Mathematics, 2015-01, Vol.79 (2), p.311-345</ispartof><rights>2015 RAS(DoM) and LMS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-18b89e707dc3f72581092b0d9aa82db2d183256027a75fd2173e46ba2466700f3</citedby><cites>FETCH-LOGICAL-c363t-18b89e707dc3f72581092b0d9aa82db2d183256027a75fd2173e46ba2466700f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/IM2015v079n02ABEH002744/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Nagaev, S. V.</creatorcontrib><title>The spectral method and ergodic theorems for general Markov chains</title><title>Izvestiya. Mathematics</title><addtitle>IZV</addtitle><addtitle>Izv. Math</addtitle><description>We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris-Markov chains in the case when the return time to some fixed set has finite expectation. Our conditions for the transition function are more general than those used by Athreya-Ney and Nummelin. Unlike them, we impose restrictions not on the original transition function but on the transition function of an embedded Markov chain constructed from the return times to the fixed set mentioned above. The proof uses the spectral theory of linear operators on a Banach space.</description><subject>embedded Markov chain</subject><subject>Ergodic processes</subject><subject>Functions (mathematics)</subject><subject>Linear operators</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>resolvent</subject><subject>spectral method</subject><subject>Spectral methods</subject><subject>stationary distribution</subject><subject>Theorem proving</subject><subject>Theorems</subject><subject>uniform ergodicity</subject><issn>1064-5632</issn><issn>1468-4810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAUxC0EEqXwGfDAwBJ4_hM7Gduq0EqtWAoDi-XETpOSxMFOK_HtSVVGENO74Xene4fQLYEHAhIel2sKJD6ATFugk-l8AUAl52doRLhIIp4QOB80CB7FgtFLdBXCDgA4J2yEppvS4tDZvPe6xo3tS2ewbg22futMleO-tM7bJuDCeby1rT1ya-0_3AHnpa7acI0uCl0He_Nzx-j1ab6ZLaLVy_NyNllFOROsj0iSJamVIE3OCknjoVdKMzCp1gk1GTUkYTQWQ3kt48JQIpnlItOUCyEBCjZG96fczrvPvQ29aqqQ27rWrXX7oAZ_HEtOhRhQeUJz70LwtlCdrxrtvxQBdVxN_bHa4Lw7OSvXqZ3b-3Z4SS3f35RMFVWMENWZYxf2C_Zf-DcDMHra</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Nagaev, S. V.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>The spectral method and ergodic theorems for general Markov chains</title><author>Nagaev, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-18b89e707dc3f72581092b0d9aa82db2d183256027a75fd2173e46ba2466700f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>embedded Markov chain</topic><topic>Ergodic processes</topic><topic>Functions (mathematics)</topic><topic>Linear operators</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>resolvent</topic><topic>spectral method</topic><topic>Spectral methods</topic><topic>stationary distribution</topic><topic>Theorem proving</topic><topic>Theorems</topic><topic>uniform ergodicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagaev, S. V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Izvestiya. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagaev, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The spectral method and ergodic theorems for general Markov chains</atitle><jtitle>Izvestiya. Mathematics</jtitle><stitle>IZV</stitle><addtitle>Izv. Math</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>79</volume><issue>2</issue><spage>311</spage><epage>345</epage><pages>311-345</pages><issn>1064-5632</issn><eissn>1468-4810</eissn><abstract>We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris-Markov chains in the case when the return time to some fixed set has finite expectation. Our conditions for the transition function are more general than those used by Athreya-Ney and Nummelin. Unlike them, we impose restrictions not on the original transition function but on the transition function of an embedded Markov chain constructed from the return times to the fixed set mentioned above. The proof uses the spectral theory of linear operators on a Banach space.</abstract><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/IM2015v079n02ABEH002744</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5632 |
ispartof | Izvestiya. Mathematics, 2015-01, Vol.79 (2), p.311-345 |
issn | 1064-5632 1468-4810 |
language | eng |
recordid | cdi_crossref_primary_10_1070_IM2015v079n02ABEH002744 |
source | Institute of Physics Journals; Alma/SFX Local Collection |
subjects | embedded Markov chain Ergodic processes Functions (mathematics) Linear operators Markov chains Mathematical analysis resolvent spectral method Spectral methods stationary distribution Theorem proving Theorems uniform ergodicity |
title | The spectral method and ergodic theorems for general Markov chains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20spectral%20method%20and%20ergodic%20theorems%20for%20general%20Markov%20chains&rft.jtitle=Izvestiya.%20Mathematics&rft.au=Nagaev,%20S.%20V.&rft.date=2015-01-01&rft.volume=79&rft.issue=2&rft.spage=311&rft.epage=345&rft.pages=311-345&rft.issn=1064-5632&rft.eissn=1468-4810&rft_id=info:doi/10.1070/IM2015v079n02ABEH002744&rft_dat=%3Cproquest_cross%3E1835574266%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835574266&rft_id=info:pmid/&rfr_iscdi=true |